Light-weighted vehicle detection network based on improved YOLOv3-tiny

被引:15
|
作者
Ge, Pingshu [1 ]
Guo, Lie [2 ,3 ]
He, Danni [2 ]
Huang, Liang [2 ]
机构
[1] Dalian Minzu Univ, Coll Mech & Elect Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Automot Engn, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China
[3] Dalian Univ Technol, Ningbo Inst, Ningbo, Peoples R China
来源
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS | 2022年 / 18卷 / 03期
基金
中国国家自然科学基金;
关键词
Intelligent vehicle; vehicle detection; light-weighted network; YOLOv3-tiny; residual network;
D O I
10.1177/15501329221080665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicle detection is one of the most challenging research works on environment perception for intelligent vehicle. The commonly used object detection network is too large and can only be realized in real-time on a high-performance server. Based on YOLOv3-tiny, the feature extraction was realized using light-weighted networks such as DarkNet-19 and ResNet-18 to improve accuracy. The K-means algorithm was used to cluster nine anchor boxes to achieve multi-scale prediction, especially for small targets. For automotive applicable scenarios, the proposed vehicle detection network was executed in an embedded device. The KITTI data sets were trained and tested. Experimental results show that the average accuracy is improved by 14.09% compared with the traditional YOLOv3-tiny, reaching 93.66%, and can reach 13 fps on the embedded device.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] 基于改进YOLOv3-tiny的路面坑洞检测
    翟帅
    冯永慧
    罗宏煜
    肖思航
    田丽玲
    吴少伟
    计量与测试技术, 2021, 48 (09) : 45 - 49
  • [32] Vehicle detection algorithm based on improved YOLOv3
    Chen W.-Y.
    Zhao H.-C.
    Liu P.-F.
    Fang J.
    Sun H.
    Kongzhi yu Juece/Control and Decision, 2024, 39 (04): : 1151 - 1159
  • [33] 基于改进YOLOv3-tiny的工地行人检测
    于春和
    鄂美玉
    电脑与信息技术, 2022, 30 (04) : 5 - 7
  • [34] Real-time method for traffic sign detection and recognition based on YOLOv3-tiny with multiscale feature extraction
    Yao, Zhenxin
    Song, Xinping
    Zhao, Lu
    Yin, Yanhang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (07) : 1978 - 1991
  • [35] An improved tiny-yolov3 pedestrian detection algorithm
    Zhang, Yi
    Shen, Yongliang
    Zhang, Jun
    OPTIK, 2019, 183 : 17 - 23
  • [36] Machine oil leakage detection based on an improved YOLOv4-tiny neural network
    Li, Yuehua
    Wu, Sailin
    Sun, Jiahao
    Hu, Bin
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2024, 44 (02) : 124 - 132
  • [37] Improved YOLOv7-tiny Lightweight Infrared Vehicle Target Detection Algorithm
    Xu, Xiaoyang
    Gao, Chongyang
    Computer Engineering and Applications, 2024, 60 (01) : 74 - 83
  • [38] 基于改进YOLOv3-Tiny的番茄苗分级检测
    张秀花
    静茂凯
    袁永伟
    尹义蕾
    李恺
    王春辉
    农业工程学报, 2022, 38 (01) : 221 - 229
  • [39] 基于YOLOv3-tiny的火焰目标检测算法
    徐岩
    李永泉
    郭晓燕
    韩立苏
    刘巧玲
    山东科技大学学报(自然科学版), 2022, 41 (06) : 95 - 103
  • [40] 基于YOLOv3-Tiny改进的船舶目标检测研究
    朱伟
    段先华
    程婧怡
    计算机应用与软件, 2024, 41 (06) : 169 - 174+229