3-D SAR Data-Driven Imaging via Learned Low-Rank and Sparse Priors

被引:11
|
作者
Wang, Mou [1 ,2 ,3 ]
Wei, Shunjun [1 ]
Zhou, Zichen [1 ]
Shi, Jun [1 ]
Zhang, Xiaoling [1 ]
Guo, Yongxin [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] Natl Univ Singapore, Ctr Smart Med Technol, Suzhou Res Inst, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Radar polarimetry; Three-dimensional displays; Synthetic aperture radar; Imaging; Image reconstruction; Computational modeling; Scattering; 3-D synthetic aperture radar (SAR) imaging; deep unfolding; fast iterative shrinkage; thresholding algorithm (FISTA); low-rank; matrix completion; millimeter-wave (mmW); MATRIX COMPLETION; ALGORITHM; NETWORK; NET; RECONSTRUCTION; REGULARIZATION; SIGNAL;
D O I
10.1109/TGRS.2022.3175486
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the sensing time and improving the reconstruction accuracy. However, many of them only explore the sparse prior of 3-D SAR images, which leads to biased estimations in cases of non-sparse scenarios. To remedy this problem, we propose a new network with learned low-rank and sparse priors, i.e., LLRS-Net, to obtain improved reconstructions from sparsely sampled 3-D SAR echoes. In our scheme, a two-stage reconstruction algorithmic framework (LSRA) is derived based on sparse and low-rank priors, wherein the first stage recovers the measurements from their limited observations by exploring the low-rank prior, while the second estimates the final 3-D SAR images with a fast iterative optimization. Theoretically inspired by LRSA, the LLRS-Net is designed into a cascaded network structure. In LLRS-Net, the trainable weights serve as independent variables and control the algorithmic hyperparameters via regularizing functions, ensuring a well-conditioned updating tendency. By end-to-end training, the network weights are updated automatically under the guidance of a compound loss function constraining both the outputs of two stages. Finally, the methodology is validated on simulations and measured experiments. These results show that the proposed framework outperforms many state-of-the-art imaging algorithms in recovering 3-D SAR images from incomplete echo data.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Image Restoration Based on 3-D Autoregressive Model via Low-Rank Minimization
    Li, Mading
    Liu, Jiaying
    Guan, Yu
    Guo, Zongming
    2015 DATA COMPRESSION CONFERENCE (DCC), 2015, : 455 - 455
  • [32] Low-Rank Tensor Completion With 3-D Spatiotemporal Transform for Traffic Data Imputation
    Shu, Hao
    Wang, Hailin
    Peng, Jiangjun
    Meng, Deyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 18673 - 18687
  • [33] LRSR-ADMM-Net: A Joint Low-Rank and Sparse Recovery Network for SAR Imaging
    An, Hongyang
    Jiang, Ruili
    Wu, Junjie
    Teh, Kah Chan
    Sun, Zhichao
    Li, Zhongyu
    Yang, Jianyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Data-driven inference of bioprocess models: A low-rank matrix approximation approach
    Pimentel, Guilherme A.
    Dewasme, Laurent
    Vande Wouwer, Alain
    JOURNAL OF PROCESS CONTROL, 2024, 134
  • [35] Low-Rank Undetectable Attacks Against Multiagent Systems: A Data-Driven Approach
    Wang, Kaiyu
    Ye, Dan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2709 - 2718
  • [36] DEM Generation Using Circular SAR Data Based on Low-Rank and Sparse Matrix Decomposition
    Zhang, Jinqiang
    Suo, Zhiyong
    Li, Zhenfang
    Zhang, Qingjun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) : 724 - 728
  • [37] Sparse and Low-Rank Subspace Data Clustering with Manifold Regularization Learned by Local Linear Embedding
    Yang, Ye
    Hu, Yongli
    Wu, Fei
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [38] COMPRESSED SENSING LINEAR ARRAY SAR 3-D IMAGING VIA SPARSE LOCATIONS PREDICTION
    Wei, Shun-Jun
    Zhang, Xiao-Ling
    Shi, Jun
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1887 - 1890
  • [39] Improved Generalization Bound and Learning of Sparsity Patterns for Data-Driven Low-Rank Approximation
    Sakaue, Shinsaku
    Oki, Taihei
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206 : 1 - 10
  • [40] Data-Driven and Online Estimation of Linear Sensitivity Distribution Factors: A Low-rank Approach
    Ospina, Ana M.
    Dall'Anese, Emiliano
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7285 - 7292