SOME REMARKS ON REPRESENTATIONS OF NON-SYMMETRIC LOCAL DIRICHLET FORMS

被引:0
|
作者
Hu, Ze-Chun [1 ]
Ma, Zhi-Ming [2 ]
Sun, Wei [3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Non-symmetric local Dirichlet form; LeJan's formula; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note., we give some remarks on the structure of non-symmetric local Dirichlet forms. We first present LeJan's transformation rule for their co-symmetric parts. Combined with the classical LeJan's Formula, it shows that essentially any local Dirichlet form must be given by differential operators (up to a killing part). Then, is applications, we use this formula to give explicit representations for local Dirichlet forms on both infinite and finite dimensional slate spaces.
引用
收藏
页码:145 / +
页数:3
相关论文
共 50 条
  • [21] NON-LOCAL DIRICHLET FORMS AND SYMMETRIC JUMP PROCESSES
    Barlow, Martin T.
    Bass, Richard F.
    Chen, Zhen-Qing
    Kassmann, Moritz
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (04) : 1963 - 1999
  • [22] On notions of harmonicity for non-symmetric Dirichlet form
    Ma ZhiMing
    Zhu RongChan
    Zhu XiangChan
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (06) : 1407 - 1420
  • [23] On notions of harmonicity for non-symmetric Dirichlet form
    MA ZhiMing1
    2School of Mathematical Sciences
    Science China(Mathematics), 2010, 53 (06) : 1407 - 1420
  • [24] On notions of harmonicity for non-symmetric Dirichlet form
    ZhiMing Ma
    RongChan Zhu
    XiangChan Zhu
    Science China Mathematics, 2010, 53 : 1407 - 1420
  • [25] Fractional derivatives non-symmetric and time-dependent Dirichlet forms and the drift form
    Jacob, N
    Schilling, RL
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (03): : 801 - 830
  • [26] CONJOINED TWINS - SYMMETRIC AND NON-SYMMETRIC (PARASITIC) FORMS
    WERNER, JP
    BOHM, N
    HELWIG, H
    SCHROTER, W
    KLINISCHE PADIATRIE, 1978, 190 (04): : 365 - 371
  • [27] Elliptic Harnack inequalities for symmetric non-local Dirichlet forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 : 1 - 42
  • [28] Local algebra of a non-symmetric corner
    Rabinovich, V
    Schulze, BW
    Tarkhanov, N
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 275 - 280
  • [29] Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 271 (1330) : 1 - +
  • [30] Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (11) : 3747 - 3803