共 50 条
SEMIAUTOMATIC VISUAL-ATTENTION MODELING AND ITS APPLICATION TO VIDEO COMPRESSION
被引:0
|作者:
Gitman, Yury
[1
]
Erofeev, Mikhail
[1
]
Vatolin, Dmitriy
[1
]
Andrey, Bolshakov
[2
]
Alexey, Fedorov
[1
]
机构:
[1] Moscow MV Lomonosov State Univ, Moscow 117234, Russia
[2] Inst Informat Transmiss Problems, Moscow, Russia
关键词:
Saliency;
Visual attention;
Eye-tracking;
Saliency-aware compression;
H.264;
IMAGE;
D O I:
暂无
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
This research aims to sufficiently increase the quality of visual-attention modeling to enable practical applications. We found that automatic models are significantly worse at predicting attention than even single-observer eye tracking. We propose a semiautomatic approach that requires eye tracking of only one observer and is based on time consistency of the observer's attention. Our comparisons showed the high objective quality of our proposed approach relative to automatic methods and to the results of single-observer eye tracking with no postprocessing. We demonstrated the practical applicability of our proposed concept to the task of saliency-based video compression.
引用
收藏
页码:1105 / 1109
页数:5
相关论文