CENTAURUS: A Cloud Service for K-means Clustering

被引:0
|
作者
Golubovic, Nevena [1 ]
Gill, Angad [1 ]
Krintz, Chandra [1 ]
Wolski, Rich [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
关键词
K-means Clustering; Mahalanobis; Cloud;
D O I
10.1109/DASC-PICom-DataCom-CyberSciTec.2017.183
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present CENTAURUS, a scalable, easy to use, cloud service and pluggable framework for k-means clustering that automatically deploys and executes multiple k-means variants concurrently, and then scores them to provide a clustering recommendation. CENTAURUS scores clustering results using Bayesian Information Criterion to determine the best model fit across cluster results. CENTAURUS visualization and diagnostic tools help users interpret clustering results. We empirically evaluate CENTAURUS and compare it to MZA, a popular desktop tool that uses k-means clustering to extract farm management zones from soil electroconductivity data. We show that CENTAURUS produces better results, is more scalable, and requires less guidance from the user.
引用
收藏
页码:1135 / 1142
页数:8
相关论文
共 50 条
  • [41] Adaptive Point Cloud Reduction Based on Multi Parameter k-Means Clustering
    Wang Jianqiang
    Fan Yanguo
    Li Guosheng
    Yu Dingfeng
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (06)
  • [42] Accelerating the Mobile Cloud: Using Amazon Mobile Analytics and K-Means Clustering
    Beck, Matthew
    Hao, Wei
    Campan, Alina
    2017 IEEE 7TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE IEEE CCWC-2017, 2017,
  • [43] Hyperbolic K-means for traffic-aware clustering in cloud and virtualized RANs
    Djeddal, Hanane
    Touzari, Liticia
    Giovanidis, Anastasios
    Phung, Chi-Dung
    Secci, Stefano
    COMPUTER COMMUNICATIONS, 2021, 176 : 258 - 271
  • [44] Based on K-means clustering and CNN algorithm research in hail cloud determination
    Wang Xue
    Liao Feijia
    Xu Wenxia
    Guo Kun
    Li Guodong
    2015 SEVENTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2015), 2015, : 232 - 235
  • [45] An Improved K-means Clustering Algorithm
    Wang Yintong
    Li Wanlong
    Gao Rujia
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [46] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    IEEE ACCESS, 2020, 8 : 80716 - 80727
  • [47] Dynamic Incremental K-means Clustering
    Aaron, Bryant
    Tamir, Dan E.
    Rishe, Naphtali D.
    Kandel, Abraham
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 1, 2014, : 308 - 313
  • [48] Sparse Embedded k-Means Clustering
    Liu, Weiwei
    Shen, Xiaobo
    Tsang, Ivor W.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [49] Granular K-means Clustering Algorithm
    Zhou, Chenglong
    Chen, Yuming
    Zhu, Yidong
    Computer Engineering and Applications, 2023, 59 (13) : 317 - 324
  • [50] APPLICATION OF METAHEURISTICS TO K-MEANS CLUSTERING
    Lisin, A. V.
    Faizullin, R. T.
    COMPUTER OPTICS, 2015, 39 (03) : 406 - 412