CENTAURUS: A Cloud Service for K-means Clustering

被引:0
|
作者
Golubovic, Nevena [1 ]
Gill, Angad [1 ]
Krintz, Chandra [1 ]
Wolski, Rich [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
关键词
K-means Clustering; Mahalanobis; Cloud;
D O I
10.1109/DASC-PICom-DataCom-CyberSciTec.2017.183
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present CENTAURUS, a scalable, easy to use, cloud service and pluggable framework for k-means clustering that automatically deploys and executes multiple k-means variants concurrently, and then scores them to provide a clustering recommendation. CENTAURUS scores clustering results using Bayesian Information Criterion to determine the best model fit across cluster results. CENTAURUS visualization and diagnostic tools help users interpret clustering results. We empirically evaluate CENTAURUS and compare it to MZA, a popular desktop tool that uses k-means clustering to extract farm management zones from soil electroconductivity data. We show that CENTAURUS produces better results, is more scalable, and requires less guidance from the user.
引用
收藏
页码:1135 / 1142
页数:8
相关论文
共 50 条
  • [1] Implementation of K-means clustering in cloud computing environment
    Mahendiran, A.
    Saravanan, N.
    Venkata Subramanian, N.
    Sairam, N.
    Research Journal of Applied Sciences, Engineering and Technology, 2012, 4 (10) : 1391 - 1394
  • [2] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67
  • [3] Adaptive simplification of point cloud using k-means clustering
    Shi, Bao-Quan
    Liang, Jin
    Liu, Qing
    COMPUTER-AIDED DESIGN, 2011, 43 (08) : 910 - 922
  • [4] Point Cloud Simplification Method Based on k-Means Clustering
    He Yibo
    Chen Ranli
    Wu Kan
    Duan Zhixin
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (09)
  • [5] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):
  • [6] Exploring K-Means Clustering and skyline for Web Service Selection
    Purohit, Lalit
    Kumar, Sandeep
    2016 11TH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2016, : 603 - 607
  • [7] Selection of K in K-means clustering
    Pham, DT
    Dimov, SS
    Nguyen, CD
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2005, 219 (01) : 103 - 119
  • [8] Geodesic K-means Clustering
    Asgharbeygi, Nima
    Maleki, Arian
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3450 - 3453
  • [9] Stability of k-means clustering
    Ben-David, Shai
    Pal, Ddvid
    Simon, Hans Ulrich
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 20 - +
  • [10] On the Optimality of k-means Clustering
    Dalton, Lori A.
    2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 70 - 71