Fabrication of Graphene/TiO2/Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage

被引:128
|
作者
Liu, Huan [1 ]
Wang, Xiaodong [1 ]
Wu, Dezhen [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Phase change materials; Graphene nanosheets; Microcapsules; Solar photocatalysis; Solar thermal energy storage; SINGLE-CRYSTALLINE NANOSHEETS; SELF-ASSEMBLY SYNTHESIS; TITANIUM-DIOXIDE SHELL; THERMAL-CONDUCTIVITY; HYDROGEN-PRODUCTION; TIO2; GRAPHENE; WATER; ENCAPSULATION; DEGRADATION;
D O I
10.1021/acssuschemeng.7b00321
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To enhance the solar energy utilization efficiency of microencapsulated phase change materials (PCMs), a novel composite system was designed by combination of graphene nanosheets and the microencapsulated n-eicosane with a brookite TiO2 shell. A series of neicosane@TiO2@graphene microcapsules were fabricated through interfacial polycondensation in an emulsion templating system, and their microstructures, chemical compositions and crystallinity were investigated extensively. The composite system presented a spherical core shell structural morphology, where graphene nanosheets were attached onto the micro capsule surfaces through hydrogen bonding. The composite system achieved phase-change enthalpies over 160 J/g and its thermal conductivity was also improved from 0.64 to 0.98 W. m(-1).K-1 due to highly thermally conductive graphene nanosheets. This that the introduction of graphene nanosheets was an effective way not only to improve the structural stability and serving durability of the composite system but also to enhance its solar photocatalytic activity by promoting the electrons transfer and charges separation of TiO2. The composite system developed by this work exhibits a great potential for direct solar energy utilizations such as solar thermal energy storage in a natural environment, solar photodegradation and detoxification for the water containing organic pollutants, and solar thermal energy collection and decontamination for industrial hot wastewater. study confirmed
引用
收藏
页码:4906 / 4915
页数:10
相关论文
共 50 条
  • [31] Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage
    Zheng, Xiangjun
    Gao, Xuenong
    Huang, Zhaowen
    Li, Zhongping
    Fang, Yutang
    Zhang, Zhengguo
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 226 (226)
  • [32] Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications
    Tsolakoglou, Nikolas P.
    Koukou, Maria K.
    Vrachopoulos, Michalis Gr
    Tachos, Nikolaos
    Lymberis, Kostas
    Stathopoulos, Vassilis
    INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY SYSTEMS AND ENVIRONMENTAL ENGINEERING (ASEE17), 2017, 22
  • [33] High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques
    Cardenas, Bruno
    Leon, Noel
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 27 : 724 - 737
  • [34] Solar energy latent thermal storage by phase change materials (PCMs) in a honeycomb system
    Andreozzi, Assunta
    Buonomo, Bernardo
    Ercole, Davide
    Manca, Oronzio
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 6 : 410 - 420
  • [35] Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage
    Zhang N.
    Yuan Y.
    Energy and Built Environment, 2020, 1 (04): : 410 - 416
  • [36] Synthesis and characterization of microencapsulated paraffin with TiO2 shell as thermal energy storage materials
    Xiaochun Ma
    Yanjun Liu
    Han Liu
    Bin Xu
    Jing Zhou
    Fan Xiao
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 15241 - 15248
  • [37] Synthesis and characterization of microencapsulated paraffin with TiO2 shell as thermal energy storage materials
    Ma, Xiaochun
    Liu, Yanjun
    Liu, Han
    Xu, Bin
    Zhou, Jing
    Xiao, Fan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (17) : 15241 - 15248
  • [38] HEAT TRANSFER ENHANCEMENT OF PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE SYSTEMS
    Lim, Celine S. L.
    Weaver, Ryan
    Sobhansarbandi, Sarvenaz
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2019, 2019,
  • [39] Mechanical-thermal coupling in micro-nanocavity graphene/paraffin phase change energy storage materials for heat management
    Wang, Yuhao
    Yu, Junhong
    Huang, Wentian
    Di, Jun
    Cai, Jinming
    Hu, Jianbo
    APPLIED PHYSICS LETTERS, 2024, 125 (06)
  • [40] Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems
    Alam, Tanvir E.
    Dhau, Jaspreet S.
    Goswami, D. Yogi
    Stefanakos, Elias
    APPLIED ENERGY, 2015, 154 : 92 - 101