Fabrication of Graphene/TiO2/Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage

被引:128
|
作者
Liu, Huan [1 ]
Wang, Xiaodong [1 ]
Wu, Dezhen [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Phase change materials; Graphene nanosheets; Microcapsules; Solar photocatalysis; Solar thermal energy storage; SINGLE-CRYSTALLINE NANOSHEETS; SELF-ASSEMBLY SYNTHESIS; TITANIUM-DIOXIDE SHELL; THERMAL-CONDUCTIVITY; HYDROGEN-PRODUCTION; TIO2; GRAPHENE; WATER; ENCAPSULATION; DEGRADATION;
D O I
10.1021/acssuschemeng.7b00321
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To enhance the solar energy utilization efficiency of microencapsulated phase change materials (PCMs), a novel composite system was designed by combination of graphene nanosheets and the microencapsulated n-eicosane with a brookite TiO2 shell. A series of neicosane@TiO2@graphene microcapsules were fabricated through interfacial polycondensation in an emulsion templating system, and their microstructures, chemical compositions and crystallinity were investigated extensively. The composite system presented a spherical core shell structural morphology, where graphene nanosheets were attached onto the micro capsule surfaces through hydrogen bonding. The composite system achieved phase-change enthalpies over 160 J/g and its thermal conductivity was also improved from 0.64 to 0.98 W. m(-1).K-1 due to highly thermally conductive graphene nanosheets. This that the introduction of graphene nanosheets was an effective way not only to improve the structural stability and serving durability of the composite system but also to enhance its solar photocatalytic activity by promoting the electrons transfer and charges separation of TiO2. The composite system developed by this work exhibits a great potential for direct solar energy utilizations such as solar thermal energy storage in a natural environment, solar photodegradation and detoxification for the water containing organic pollutants, and solar thermal energy collection and decontamination for industrial hot wastewater. study confirmed
引用
收藏
页码:4906 / 4915
页数:10
相关论文
共 50 条
  • [1] Fabrication and properties analysis of paraffin@TiO2/Ag phase change microcapsules for thermal energy storage and photocatalysis
    Su, Jieying
    Zhang, Haitao
    Gong, Yuanyuan
    Xu, Qinqin
    Hou, Maohua
    Xu, Bin
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 301
  • [2] Paraffin/Palygorskite composite phase change materials for thermal energy storage
    Yang, Dan
    Shi, Silan
    Xiong, Lian
    Guo, Haijun
    Zhang, Hairong
    Chen, Xuefang
    Wang, Can
    Chen, Xinde
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 228 - 234
  • [3] Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis
    Prasannalakshmi, P.
    Shanmugam, N.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 61 : 114 - 124
  • [4] Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide
    Gao, Fengxia
    Wang, Xiaodong
    Wu, Dezhen
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 168 : 146 - 164
  • [5] Preparation and properties of Paraffin/TiO2/Active- carbon composite phase change materials
    Hao Y.-G.
    Shao X.-K.
    Tang H.-D.
    Wang T.
    Liu J.-J.
    Li B.-X.
    Li, Ben-Xia (bxli@aust.edu.cn), 2016, Beijing Institute of Aeronautical Materials (BIAM) (44): : 51 - 55
  • [6] Fabrication and characterization of capric acid/reduced graphene oxide decorated diatomite composite phase change materials for solar energy storage
    Li, Min
    Mu, Boyuan
    ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (01):
  • [7] Kaolinite stabilized paraffin composite phase change materials for thermal energy storage
    Li, Chuanchang
    Fu, Liangjie
    Ouyang, Jing
    Tang, Aidong
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2015, 115 : 212 - 220
  • [8] Influences of reduction temperature on energy storage performance of paraffin wax/graphene aerogel composite phase change materials
    He, Miao
    Xie, Dengdeng
    Yin, Lian
    Gong, Kaili
    Zhou, Keqing
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [9] Influences of reduction temperature on energy storage performance of paraffin wax/graphene aerogel composite phase change materials
    He, Miao
    Xie, Dengdeng
    Yin, Lian
    Gong, Kaili
    Zhou, Keqing
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [10] Composite phase change materials with heat transfer self-enhancement for thermal energy storage
    Zhou, Xinchen
    Zhang, Xuelai
    Zheng, Qinyue
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 217 (217)