Regional Population Forecast and Analysis Based on Machine Learning Strategy

被引:13
|
作者
Wang, Chian-Yue [1 ]
Lee, Shin-Jye [2 ]
机构
[1] Natl Taipei Univ, Grad Inst Urban Planning, Taipei 237, Taiwan
[2] Natl Chiao Tung Univ, Inst Management Technol, Hsinchu 300, Taiwan
关键词
population growth prediction; boosting regression; XGBOOST; CLASSIFICATION; PREDICTION; REGRESSION; MIGRATION; NETWORKS; MODEL;
D O I
10.3390/e23060656
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Regional population forecast and analysis is of essence to urban and regional planning, and a well-designed plan can effectively construct a sound national infrastructure and stabilize positive population growth. Traditionally, either urban or regional planning relies on the opinions of demographers in terms of how the population of a city or a region will grow. Multi-regional population forecast is currently possible, carried out mainly on the basis of the Interregional Cohort-Component model. While this model has its unique advantages, several demographic rates are determined based on the decisions made by primary planners. Hence, the only drawback for cohort-component type population forecasting is allowing the analyst to specify the demographic rates of the future, and it goes without saying that this tends to introduce a biased result in forecasting accuracy. To effectively avoid this problem, this work proposes a machine learning-based method to forecast multi-regional population growth objectively. Thus, this work, drawing upon the newly developed machine learning technology, attempts to analyze and forecast the population growth of major cities in Taiwan. By effectively using the advantage of the XGBoost algorithm, the evaluation of feature importance and the forecast of multi-regional population growth between the present and the near future can be observed objectively, and it can further provide an objective reference to the urban planning of regional population.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] A Machine Learning-Based Global Atmospheric Forecast Model
    Szunyogh, Istvan
    Arcomano, Troy
    Pathak, Jaideep
    Wikner, Alexander
    Hunt, Brian
    Ott, Edward
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (09)
  • [12] Ground-level ozone forecast based on machine learning
    Zabkar, R
    Zabkar, J
    Cemas, D
    AIR POLLUTION XII, 2004, 14 : 41 - 48
  • [13] Machine learning based forecast for the prediction of inpatient bed demand
    Manuel Tello
    Eric S. Reich
    Jason Puckey
    Rebecca Maff
    Andres Garcia-Arce
    Biplab Sudhin Bhattacharya
    Felipe Feijoo
    BMC Medical Informatics and Decision Making, 22
  • [14] Rain Intensity Forecast with Microcontroller Based Pluviometer and Machine Learning
    Esirge, Zeynep
    Beyaz, Abdullah
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2022, 65
  • [15] Machine learning based forecast for the prediction of inpatient bed demand
    Tello, Manuel
    Reich, Eric S.
    Puckey, Jason
    Maff, Rebecca
    Garcia-Arce, Andres
    Bhattacharya, Biplab Sudhin
    Feijoo, Felipe
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [16] Machine learning based decline curve analysis for short-term oil production forecast
    Tadjer, Amine
    Hong, Aojie
    Bratvold, Reidar B.
    ENERGY EXPLORATION & EXPLOITATION, 2021, 39 (05) : 1747 - 1769
  • [17] Machine learning-based regional flood frequency analysis of Indian watersheds
    Mangukiya, Nikunj K.
    Kumar, Abhishek
    Sharma, Ashutosh
    CLEAN-SOIL AIR WATER, 2025, 53 (03)
  • [18] StrategyAtlas: Strategy Analysis for Machine Learning Interpretability
    Collaris, Dennis
    van Wijk, Jarke J.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (06) : 2996 - 3008
  • [19] Virtual Machine Allocation Strategy Based on Statistical Machine Learning
    Han, Bo
    Zhang, Rongli
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [20] Virtual Machine Allocation Strategy Based on Statistical Machine Learning
    Han, Bo
    Zhang, Rongli
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022