REMARKS ON THE Lp-APPROACH TO THE STOKES EQUATION ON UNBOUNDED DOMAINS

被引:2
|
作者
Geissert, Matthias [1 ]
Heck, Horst [1 ]
Hieber, Matthias [1 ]
Sawada, Okihiro [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2010年 / 3卷 / 02期
关键词
Stokes equation; unbounded domains; noncompact boundary;
D O I
10.3934/dcdss.2010.3.291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a domain Omega subset of R-n with uniform C-3-boundary and assume that the Helmholtz projection P exists on L-p(Omega) for some 1 < p < infinity. Of concern are recent results on the Stokes operator in L-p(Omega) generating an analytic semigroup on L-p(Omega) and admitting maximal L-p-L-q-regularity.
引用
收藏
页码:291 / 297
页数:7
相关论文
共 50 条
  • [21] The Navier-Stokes equations over unbounded domains
    Kähler, UU
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 1431 - 1446
  • [22] Navier-Stokes equations with delays on unbounded domains
    Garrido-Atienza, MJ
    Marín-Rubio, P
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1100 - 1118
  • [23] On Stokes operators with variable viscosity in bounded and unbounded domains
    Abels, Helmut
    Terasawa, Yutaka
    MATHEMATISCHE ANNALEN, 2009, 344 (02) : 381 - 429
  • [24] Stochastic Navier–Stokes Equations in Unbounded Channel Domains
    Utpal Manna
    Manil T. Mohan
    Sivaguru S. Sritharan
    Journal of Mathematical Fluid Mechanics, 2015, 17 : 47 - 86
  • [25] On Stokes operators with variable viscosity in bounded and unbounded domains
    Helmut Abels
    Yutaka Terasawa
    Mathematische Annalen, 2009, 344 : 381 - 429
  • [26] THE LP-APPROACH TO THE FLUID-RIGID BODY INTERACTION PROBLEM FOR COMPRESSIBLE FLUIDS
    Hieber, Matthias
    Murata, Miho
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2015, 4 (01): : 69 - 87
  • [27] On local solutions to a free boundary problem for incompressible viscous magnetohydrodynamics in the Lp-approach
    Shibata, Yoshihiro
    Zajaczkowski, Wojciech M.
    DISSERTATIONES MATHEMATICAE, 2021, 566 : 1 - 102
  • [28] RAPID SOLUTION OF THE WAVE EQUATION IN UNBOUNDED DOMAINS
    Banjai, L.
    Sauter, S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 227 - 249
  • [29] Improved accuracy for the Helmholtz equation in unbounded domains
    Turkel, E
    Farhat, C
    Hetmaniuk, U
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (15) : 1963 - 1988
  • [30] Regular solutions for Schrodinger equation on unbounded domains
    Ren, YX
    Wu, R
    ACTA MATHEMATICA SCIENTIA, 1998, 18 (04) : 387 - 393