Connectedness of Solution Sets of Strong Vector Equilibrium Problems with an Application

被引:11
|
作者
Xu, Yangdong [1 ]
Zhang, Pingping [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Math & Phys, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Strong vector equilibrium problem; Connectedness; Nonconvex separation theorem; Linear vector optimization problem; SEPARATION THEOREM; SCALARIZATION; EFFICIENCY; EXISTENCE;
D O I
10.1007/s10957-018-1244-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, the connectedness of solution set of a strong vector equilibrium problem in a finite dimensional space, is investigated. Firstly, a nonconvex separation theorem is given, that is, a neither open nor closed set and a compact subset in a finite dimensional space can be strictly separated by a sublinear and strongly monotone function. Secondly, in terms of the nonconvex separation theorem, the union relation between the solution set of the strong vector equilibrium problem and the solution sets of a series of nonlinear scalar problems, is established. Under suitable assumptions, the connectedness and the path connectedness of the solution set of the strong vector equilibrium problem are obtained. In particular, we solve partly the question related to the path connectedness of the solution set of the strong vector equilibrium problem. The question is proposed by Han and Huang in the reference (J Optim Theory Appl, 2016. https://doi.org/10.1007/s10957-016-1032-9). Finally, as an application, we apply the main results to derive the connectedness of the solution set of a linear vector optimization problem.
引用
收藏
页码:131 / 152
页数:22
相关论文
共 50 条
  • [41] Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems
    Han, Yu
    Gong, Xun-Hua
    APPLIED MATHEMATICS LETTERS, 2014, 28 : 38 - 41
  • [42] CONNECTEDNESS PROPERTIES OF EFFICIENT AND MINIMAL SETS TO VECTOR OPTIMIZATION PROBLEMS
    Anh L.Q.
    Anh N.T.
    Duoc P.T.
    van Khanh L.T.
    Thu P.T.A.
    Applied Set-Valued Analysis and Optimization, 2023, 5 (01): : 121 - 135
  • [43] CONNECTEDNESS OF THE SOLUTION SET FOR SYMMETRIC VECTOR QUASIEQUILIBRIUM PROBLEMS
    Chen, Bin
    Huang, Nan-jing
    PACIFIC JOURNAL OF OPTIMIZATION, 2013, 9 (01): : 29 - 45
  • [44] CONNECTEDNESS AND COMPACTNESS OF WEAK EFFICIENT SOLUTIONS FOR VECTOR EQUILIBRIUM PROBLEMS
    Long, Xian Jun
    Peng, Jian Wen
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1225 - 1233
  • [45] Painlevé-Kuratowski Convergences of the Solution Sets for Perturbed Vector Equilibrium Problems without Monotonicity
    Zai-yun PENG
    Xin-min YANG
    Acta Mathematicae Applicatae Sinica, 2014, (04) : 845 - 858
  • [46] Painlevé–Kuratowski convergences of the solution sets for generalized vector quasi-equilibrium problems
    Lam Quoc Anh
    Thanatporn Bantaojai
    Nguyen Van Hung
    Vo Minh Tam
    Rabian Wangkeeree
    Computational and Applied Mathematics, 2018, 37 : 3832 - 3845
  • [47] Painlev,-Kuratowski convergences of the solution sets for generalized vector quasi-equilibrium problems
    Lam Quoc Anh
    Bantaojai, Thanatporn
    Nguyen Van Hung
    Vo Minh Tam
    Wangkeeree, Rabian
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3832 - 3845
  • [48] Painlevé-Kuratowski Convergences of the Solution Sets for Perturbed Vector Equilibrium Problems without Monotonicity
    Zaiyun PENG
    Xinmin YANG
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (04) : 845 - 858
  • [49] Painlevé-Kuratowski convergences of the solution sets for perturbed vector equilibrium problems without monotonicity
    Zai-yun Peng
    Xin-min Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 845 - 858
  • [50] Painlev,-Kuratowski convergences of the solution sets for perturbed vector equilibrium problems without monotonicity
    Peng, Zai-yun
    Yang, Xin-min
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (04): : 845 - 858