Assessing the accuracy of prediction algorithms for classification: an overview

被引:1580
|
作者
Baldi, P [1 ]
Brunak, S
Chauvin, Y
Andersen, CAF
Nielsen, H
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
[2] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark
[3] Net ID Inc, San Francisco, CA 94107 USA
[4] Univ Calif Irvine, Dept Biol Sci, Irvine, CA 92697 USA
关键词
D O I
10.1093/bioinformatics/16.5.412
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We provide a unified overview of methods that currently are widely used to assess the accuracy of prediction algorithms, from raw percentages, quadratic error measures and other distances, ann correlation coefficients, and to information theoretic measures such as relative entropy and mutual information. We briefly discuss the advantages and disadvantages of each approach. For classification tasks, we derive new learning algorithms for the design of prediction systems by directly optimising the correlation coefficient. We observe and prove several results relating sensitivity nod specificity of optimal systems. While the principles are general, we illustrate the applicability on specific problems such as protein secondary structure and signal peptide prediction.
引用
收藏
页码:412 / 424
页数:13
相关论文
共 50 条
  • [42] Assessing the Accuracy of Radio Astronomy Source-Finding Algorithms
    Westerlund, S.
    Harris, C.
    Westmeier, T.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2012, 29 (03): : 301 - 308
  • [43] Assessing the accuracy of different simplified frictional rolling contact algorithms
    Vollebregt, E. A. H.
    Iwnicki, S. D.
    Xie, G.
    Shackleton, P.
    VEHICLE SYSTEM DYNAMICS, 2012, 50 (01) : 1 - 17
  • [44] Assessing Classification Models of Pharmaceuticals With Conformal Prediction
    Booksh, Karl S.
    Celani, Caelin P.
    Ralbovsky, Nicole M.
    Smith, Joseph P.
    JOURNAL OF CHEMOMETRICS, 2025, 39 (03)
  • [45] Monotonic classification: An overview on algorithms, performance measures and data sets
    Cano, Jose-Ramon
    Antonio Gutierrez, Pedro
    Krawczyk, Bartosz
    Wozniak, Michal
    Garcia, Salvador
    NEUROCOMPUTING, 2019, 341 : 168 - 182
  • [46] A hybrid approach for improving the accuracy of classification algorithms in data mining
    Akgobek, Omer
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2012, 29 (02): : 1039 - 1054
  • [47] Improved classification accuracy by feature extraction using genetic algorithms
    Patriarche, J
    Manduca, A
    Erickson, B
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1402 - 1412
  • [48] Benchmarking the Accuracy of Algorithms for Memory-Constrained Image Classification
    Muksch, Sebastian
    Olausson, Theo
    Wilhelm, John
    Andreadis, Pavlos
    2020 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC 2020), 2020, : 400 - 404
  • [49] An Overview of Data Mining Algorithms in Drug Induced Toxicity Prediction
    Omer, Ankur
    Singh, Poonam
    Yadav, N. K.
    Singh, R. K.
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2014, 14 (04) : 345 - 354
  • [50] A statistical significance of differences in classification accuracy of crop types using different classification algorithms
    Kumar, Pradeep
    Prasad, Rajendra
    Choudhary, Arti
    Mishra, Varun Narayan
    Gupta, Dileep Kumar
    Srivastava, Prashant K.
    GEOCARTO INTERNATIONAL, 2017, 32 (02) : 206 - 224