High pressure polymorphism of LiBH4 and of NaBH4

被引:5
|
作者
Marizy, Adrien [1 ]
Geneste, Gregory [1 ]
Garbarino, Gaston [2 ]
Loubeyre, Paul [1 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] European Synchrotron, ESRF, 71 Ave Martyrs, F-38000 Grenoble, France
关键词
GROUND-STATE STRUCTURE; X-RAY-DIFFRACTION; HYDROGEN STORAGE; PHASE-TRANSITIONS; 1ST-PRINCIPLES DETERMINATION; ELECTRONIC-STRUCTURE; METAL BOROHYDRIDES; TEMPERATURE PHASE; COMPLEX HYDRIDES; STABILITY;
D O I
10.1039/d1ra00816a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The pressure-induced structural changes in LiBH4 and in NaBH4 have been investigated experimentally up to 290 GPa by coupling Raman spectroscopy, infrared absorption spectroscopy and synchrotron X-ray diffraction. This data set is also analysed in the light of Density Functional Theory calculations performed up to 600 GPa. The [BH4](-) unit appears to be remarkably resistant under pressure. NaBH4 remains stable in the known Pnma gamma-phase up to 200 GPa and calculations predict a transition to a metallic polymeric C2/c phase at about 480 GPa. LiBH4 is confirmed to exhibit a richer polymorphism. A new Pnma orthorhombic phase VI is found to be stable above 60 GPa and there are hints of a possible phase VII above 160 GPa. DFT calculations predict that two other high pressure LiBH4 phases should appear at about 290 and 428 GPa. A very slight solubility of H-2 inside phases II, III and V of LiBH4 is observed. A NaBH4(H-2)(0.5) complex is predicted to be stable above 150 GPa.
引用
收藏
页码:25274 / 25283
页数:10
相关论文
共 50 条
  • [21] Atomic Motions in LiBH4 by NMR
    Corey, Robert L.
    Shane, David T.
    Bowman, Robert C., Jr.
    Conradi, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (47): : 18706 - 18710
  • [22] Stability and Decomposition of NaBH4
    Martelli, Pascal
    Caputo, Riccarda
    Remhof, Arndt
    Mauron, Philippe
    Borgschulte, Andreas
    Zuettel, Andreas
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (15): : 7173 - 7177
  • [23] PROPERTIES OF THE METAL-COMPLEX HYDRIDES - ABINITIO CALCULATION OF GEOMETRIC STRUCTURE, ELECTRONIC CHARGE-DISTRIBUTION AND BINDING-ENERGY OF LIBH4, NABH4, LIALH4, AND NAALH4
    BONACCORSI, R
    SCROCCO, E
    TOMASI, J
    THEORETICA CHIMICA ACTA, 1979, 52 (02): : 113 - 127
  • [24] Ionic conductivity in three crystalline phases of LiBH4 under pressure
    Sundqvist, Bertil
    Yao, Mingguang
    Andersson, Ove
    HIGH PRESSURE RESEARCH, 2013, 33 (01) : 141 - 151
  • [25] Rotational Diffusion in NaBH4
    Remhof, Arndt
    Lodziana, Zbigniev
    Buchter, Florian
    Martelli, Pascal
    Pendolino, Flavio
    Friedrichs, Oliver
    Zuettel, Andreas
    Embs, Jan Peter
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (38): : 16834 - 16837
  • [26] Cobalt in NaBH4 hydrolysis
    Demirci, U. B.
    Miele, P.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (44) : 14651 - 14665
  • [27] NaBH4 GEOPOLYMER COMPOSITES
    Schomborg, Lars
    Ruescher, Claus H.
    Buhl, J. Christian
    Kiesel, Florian
    DEVELOPMENTS IN STRATEGIC MATERIALS AND COMPUTATIONAL DESIGN V, 2015, : 3 - 14
  • [28] PHOTOREDUCTION OF CHLOROBIPHENYLS BY NABH4
    TSUJIMOTO, K
    TASAKA, S
    OHASHI, M
    JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1975, (18) : 758 - 759
  • [29] Hydrogen storage via the hydrolysis of NaBH4 basic solution:: Optimization of NaBH4 concentration
    Shang, Y.
    Chen, R.
    ENERGY & FUELS, 2006, 20 (05) : 2142 - 2148
  • [30] The Comparison in Dehydrogenation Properties and Mechanism between MgCl2(NH3)/LiBH4 and MgCl2(NH3)/NaBH4 Systems
    Gao, L.
    Guo, Y. H.
    Li, Q.
    Yu, X. B.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (20): : 9534 - 9540