Deep learning based instance segmentation of particle streaks and tufts

被引:8
|
作者
Tsalicoglou, C. [1 ]
Roesgen, T. [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
instance segmentation; deep learning; particle streak velocimetry; tufts; FLOW VISUALIZATION; VELOCIMETRY;
D O I
10.1088/1361-6501/ac8892
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
3D particle streak velocimetry (3D-PSV) and surface flow visualization using tufts both require the detection of curve segments, particle streaks or tufts, in images. We propose the use of deep learning based instance segmentation neural networks Mask region-based convolutional neural network (R-CNN) and Cascade Mask R-CNN, trained on fully synthetic data, to accurately identify, segment, and classify streaks and tufts. For 3D-PSV, we use the segmented masks and detected streak endpoints to volumetrically reconstruct flows even when the imaged streaks partly overlap or intersect. In addition, we use Mask R-CNN to segment images of tufts and classify the detected tufts according to their range of motion, thus automating the detection of regions of separated flow while at the same time providing accurate segmentation masks. Finally, we show a successful synthetic-to-real transfer by training only on synthetic data and successfully evaluating real data. The synthetic data generation is particularly suitable for the two presented applications, as the experimental images consist of simple geometric curves or a superposition of curves. Therefore, the proposed networks provide a general framework for instance detection, keypoint detection and classification that can be fine-tuned to the specific experimental application and imaging parameters using synthetic data.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Application of a Deep Learning-Based Instance Segmentation Model for Behavior Classification of Pigs
    Ma R.
    Park J.-S.
    Kim S.H.
    Kim S.-C.
    Journal of Institute of Control, Robotics and Systems, 2022, 28 (04) : 326 - 333
  • [32] Construction Instance Segmentation (CIS) Dataset for Deep Learning-Based Computer Vision
    Yan, Xuzhong
    Zhang, Hong
    Wu, Yefei
    Lin, Chen
    Liu, Shengwei
    AUTOMATION IN CONSTRUCTION, 2023, 156
  • [33] An Instance Segmentation Model Based on Deep Learning for Intelligent Diagnosis of Uterine Myomas in MRI
    Pan, Haixia
    Zhang, Meng
    Bai, Wenpei
    Li, Bin
    Wang, Hongqiang
    Geng, Haotian
    Zhao, Xiaoran
    Zhang, Dongdong
    Li, Yanan
    Chen, Minghuang
    DIAGNOSTICS, 2023, 13 (09)
  • [34] Ariadne plus : Deep Learning--Based Augmented Framework for the Instance Segmentation of Wires
    Caporali, Alessio
    Zanella, Riccardo
    De Greogrio, Daniele
    Palli, Gianluca
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8607 - 8617
  • [35] Learning Stixel-based Instance Segmentation
    Santarossa, Monty
    Schneider, Lukas
    Zelenka, Claudius
    Sclunarje, Lars
    Koch, Reinhard
    Franke, Uwe
    2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 427 - 434
  • [36] Instance Segmentation of Shrimp Based on Contrastive Learning
    Zhou, Heng
    Kim, Sung Hoon
    Kim, Sang Cheol
    Kim, Cheol Won
    Kang, Seung Won
    Kim, Hyongsuk
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [37] Deep Learning-Based Instance Medullary Pyramid Segmentation in Routine CT Examinations
    Gregory, Adriana
    Moustafa, Amr
    Poudyal, Bhavya
    Denic, Aleksandar
    Rule, Andrew D.
    Kline, Timothy L.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 547 - 547
  • [38] A deep learning approach for insulator instance segmentation and defect detection
    Antwi-Bekoe, Eldad
    Liu, Guisong
    Ainam, Jean-Paul
    Sun, Guolin
    Xie, Xiurui
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (09): : 7253 - 7269
  • [39] A deep learning approach for insulator instance segmentation and defect detection
    Eldad Antwi-Bekoe
    Guisong Liu
    Jean-Paul Ainam
    Guolin Sun
    Xiurui Xie
    Neural Computing and Applications, 2022, 34 : 7253 - 7269
  • [40] An Innovative Deep Learning Approach for Image Semantic and Instance Segmentation
    Chen C.
    Gao G.
    Liu L.
    Qiao Y.
    Journal of Computing and Information Technology, 2023, 31 (03) : 167 - 183