Development of Patent Technology Prediction Model Based on Machine Learning

被引:3
|
作者
Lee, Chih-Wei [1 ]
Tao, Feng [1 ]
Ma, Yu-Yu [2 ]
Lin, Hung-Lung [3 ]
机构
[1] Jinan Univ, Inst Ind Econ, Guangzhou 510632, Peoples R China
[2] Minnan Normal Univ, Sch Educ Sci, 36 Shi Qian Zhi St, Zhangzhou 363000, Peoples R China
[3] Sanming Univ, Sch Econ & Management, 25 Ching Tung Rd, Sanming 365004, Peoples R China
关键词
patent technology; intellectual property; automobile industry; artificial neural network; machine learning; ensemble learning; RISK; NETWORK; STORAGE;
D O I
10.3390/axioms11060253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Intellectual property rights have a great impact on the development of the automobile industry. Issues related to the timeliness of patent applications often arise, such as the inability of firms to predict new technologies and patents developed by peers. To find the proper direction of product development, the R&D departments of enterprises need to accurately predict the technology trends. Machine learning adopts calculation through a large amount of data through mathematical models and methods and finds the best solution at the fastest speed through repeated simulation and experiments, to provide decision makers with a reference basis. Therefore, this paper provides accurate forecasts through established models. In terms of the significance of management, the planning of future enterprise strategy can be divided into three stages as a short-term plan of 1-3 years, a medium-term plan of 3-5 years, and a long-term plan of 5-10 years. This study will give appropriate suggestions for the development of automobile industry technology.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Development of a Lifestyle Prediction Model Based on the Personal Values of Older Adults Using Machine Learning
    Lim, Seungju
    Park, Ji-Hyuk
    Young-Myoung, Lim
    Kim, Ah-Ram
    Nam, Sanghun
    Yoo, Sooyeon
    Han, Jungmin
    AMERICAN JOURNAL OF OCCUPATIONAL THERAPY, 2024, 78
  • [32] Development of Heavy Rain Damage Prediction Model Using Machine Learning Based on Big Data
    Choi, Changhyun
    Kim, Jeonghwan
    Kim, Jongsung
    Kim, Donghyun
    Bae, Younghye
    Kim, Hung Soo
    ADVANCES IN METEOROLOGY, 2018, 2018
  • [33] Development of an occupancy prediction model using indoor environmental data based on machine learning techniques
    Ryu, Seung Ho
    Moon, Hyeun Jun
    BUILDING AND ENVIRONMENT, 2016, 107 : 1 - 9
  • [34] Development of a machine learning-based acuity score prediction model for virtual care settings
    Justin N. Hall
    Ron Galaev
    Marina Gavrilov
    Shawn Mondoux
    BMC Medical Informatics and Decision Making, 23
  • [35] Development of a Decision Support Model Based on Machine Learning for Applying Greenhouse Gas Reduction Technology
    Lee, Sungwoo
    Tae, Sungho
    SUSTAINABILITY, 2020, 12 (09)
  • [36] Development and Validation of a Machine Learning-Based Early Warning Model for Lichenoid Vulvar Disease: Prediction Model Development Study
    Meng, Jian
    Niu, Xiaoyu
    Luo, Can
    Chen, Yueyue
    Li, Qiao
    Wei, Dongmei
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [37] Development and validation of common data model-based fracture prediction model using machine learning algorithm
    Kong, Sung Hye
    Kim, Sihyeon
    Kim, Yisak
    Kim, Jung Hee
    Kim, Kwangsoo
    Shin, Chan Soo
    OSTEOPOROSIS INTERNATIONAL, 2023, 34 (08) : 1437 - 1451
  • [38] Development and validation of common data model-based fracture prediction model using machine learning algorithm
    Sung Hye Kong
    Sihyeon Kim
    Yisak Kim
    Jung Hee Kim
    Kwangsoo Kim
    Chan Soo Shin
    Osteoporosis International, 2023, 34 : 1437 - 1451
  • [39] Application of a Fusion Model Based on Machine Learning in Visibility Prediction
    Zhen, Maochan
    Yi, Mingjian
    Luo, Tao
    Wang, Feifei
    Yang, Kaixuan
    Ma, Xuebin
    Cui, Shengcheng
    Li, Xuebin
    REMOTE SENSING, 2023, 15 (05)
  • [40] A Customer Classification Prediction Model Based on Machine Learning Techniques
    Das, T. K.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, : 321 - 326