Local Convertibility and the Quantum Simulation of Edge States in Many-Body Systems

被引:27
|
作者
Franchini, Fabio [1 ,2 ,3 ]
Cui, Jian [4 ,5 ]
Amico, Luigi [6 ,7 ,8 ]
Fan, Heng [4 ]
Gu, Mile [8 ,9 ]
Korepin, Vladimir [10 ]
Kwek, Leong Chuan [8 ,11 ,12 ]
Vedral, Vlatko [8 ,13 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] SISSA, I-34136 Trieste, Italy
[3] Ist Nazl Fis Nucl, I-34136 Trieste, Italy
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[5] Univ Freiburg, Freiburg Inst Adv Studies, D-79104 Freiburg, Germany
[6] CNR, MATIS, IMM, I-95127 Catania, Italy
[7] Dipartimento Fis & Astron, I-95127 Catania, Italy
[8] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[9] Tsinghua Univ, Ctr Quantum Informat, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[10] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[11] Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore
[12] Nanyang Technol Univ, Inst Adv Studies, Singapore 637616, Singapore
[13] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW X | 2014年 / 4卷 / 04期
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
XY-MODEL; ENTANGLEMENT; CHAIN; TRANSFORMATIONS; COMPUTATION; COMPLEXITY; COMPUTERS; MATRIX;
D O I
10.1103/PhysRevX.4.041028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In some many-body systems, certain ground-state entanglement (Renyi) entropies increase even as the correlation length decreases. This entanglement nonmonotonicity is a potential indicator of nonclassicality. In this work, we demonstrate that such a phenomenon, known as lack of local convertibility, is due to the edge-state (de) construction occurring in the system. To this end, we employ the example of the Ising chain, displaying an order-disorder quantum phase transition. Employing both analytical and numerical methods, we compute entanglement entropies for various system bipartitions (A\B) and consider ground states with and without Majorana edge states. We find that the thermal ground states, enjoying the Hamiltonian symmetries, show lack of local convertibility if either A or B is smaller than, or of the order of, the correlation length. In contrast, the ordered (symmetry-breaking) ground state is always locally convertible. The edge-state behavior explains all these results and could disclose a paradigm to understand local convertibility in other quantum phases of matter. The connection we establish between convertibility and nonlocal, quantum correlations provides a clear criterion of which features a universal quantum simulator should possess to outperform a classical machine.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [22] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [23] Seniority in quantum many-body systems
    Van Isacker, P.
    SYMMETRIES IN NATURE, 2010, 1323 : 141 - 152
  • [24] Negentropy in Many-Body Quantum Systems
    Quarati, Piero
    Lissia, Marcello
    Scarfone, Antonio M.
    ENTROPY, 2016, 18 (02)
  • [25] Digital quantum simulation of non-equilibrium quantum many-body systems
    Fauseweh, Benedikt
    Zhu, Jian-Xin
    QUANTUM INFORMATION PROCESSING, 2021, 20 (04)
  • [26] SIMULATION OF CLASSICAL MANY-BODY SYSTEMS
    EGER, M
    AMERICAN JOURNAL OF PHYSICS, 1970, 38 (12) : 1475 - &
  • [27] Constructing neural stationary states for open quantum many-body systems
    Yoshioka, Nobuyuki
    Hamazaki, Ryusuke
    PHYSICAL REVIEW B, 2019, 99 (21)
  • [28] Exact ground states of quantum many-body systems under confinement
    del Campo, Adolfo
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [30] Signatures of many-body localization in steady states of open quantum systems
    Vakulchyk, I.
    Yusipov, I.
    Ivanchenko, M.
    Flach, S.
    Denisov, S.
    PHYSICAL REVIEW B, 2018, 98 (02)