Reachability set for time-invariant linear non-negative systems

被引:0
|
作者
Zaslavskii, BG
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:746 / 748
页数:3
相关论文
共 50 条
  • [31] Local assignability of linear time-invariant systems
    Jezierski, Edward
    Systems Analysis Modelling Simulation, 1994, 16 (01):
  • [32] Computation of regular friends for output-nulling and reachability subspaces of linear time-invariant descriptor systems
    Kazantzidou, Christina
    Ntogramatzidis, Lorenzo
    Perez, Tristan
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2505 - 2510
  • [33] A note on the oscillation of linear time-invariant systems
    Pituk, Mihaly
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 876 - 879
  • [34] STABILITY OF LINEAR TIME-INVARIANT DISCRETE SYSTEMS
    DESOER, CA
    LAM, FL
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1970, 58 (11): : 1841 - &
  • [35] INTEGRAL INVERTIBILITY OF LINEAR TIME-INVARIANT SYSTEMS
    KAMIYAMA, S
    FURUTA, K
    INTERNATIONAL JOURNAL OF CONTROL, 1977, 25 (03) : 403 - 412
  • [36] The Superposition Principle of Linear Time-Invariant Systems
    Zhang, Ming
    Zhang, Anxue
    IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (06) : 153 - 156
  • [37] EQUIVALENCE OF LINEAR TIME-INVARIANT DYNAMICAL SYSTEMS
    ANDERSON, BD
    NEWCOMB, RW
    KALMAN, RE
    YOULA, DC
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1966, 281 (05): : 371 - &
  • [38] Control reconfigurability of linear time-invariant systems
    Wu, NE
    Zhou, KM
    Salomon, G
    AUTOMATICA, 2000, 36 (11) : 1767 - 1771
  • [39] Complexity reduction through a Schur-based decomposition for reachability analysis of linear time-invariant systems
    Kaynama, Shahab
    Oishi, Meeko
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (01) : 165 - 179
  • [40] Ensemble Controllability of Time-Invariant Linear Systems
    Qi, Ji
    Li, Jr-Shin
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2709 - 2714