Rashba Torque Driven Domain Wall Motion in Magnetic Helices

被引:37
|
作者
Pylypovskyi, Oleksandr V. [1 ]
Sheka, Denis D. [1 ]
Kravchuk, Volodymyr P. [2 ]
Yershov, Kostiantyn V. [2 ,3 ]
Makarov, Denys [4 ,5 ]
Gaididei, Yuri [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, UA-01601 Kiev, Ukraine
[2] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
[3] Natl Univ Kyiv Mohyla Acad, UA-04655 Kiev, Ukraine
[4] Helmholtz Zentrum Dresden Rossendorf eV, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany
[5] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
MORIYA INTERACTION; SPIN SELECTIVITY; ANISOTROPY;
D O I
10.1038/srep23316
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii-Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii-Moriya interaction leads to the opposite directions of the domain wall motion in left-or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii-Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer
    Liu, Yang
    Furuta, Masaki
    Zhu, Jian-Gang
    AIP ADVANCES, 2018, 8 (05)
  • [32] Brownian motion and entropic torque driven motion of domain walls in antiferromagnets
    Yan, Zhengren
    Chen, Zhiyuan
    Qin, Minghui
    Lu, Xubing
    Gao, Xingsen
    Liu, Junming
    PHYSICAL REVIEW B, 2018, 97 (05)
  • [33] DYNAMICS OF MAGNETIC DOMAIN WALL MOTION
    KONISHI, S
    KUSUDA, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1972, 119 (03) : C91 - &
  • [34] Domain wall motion on magnetic nanotubes
    Landeros, P.
    Nunez, Alvaro S.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (03)
  • [35] Spin accumulation, spin currents, and torque, in the problem of motion of a sharp domain wall in magnetic nanowires
    Vieira, VR
    Dugaev, VK
    Sacramento, PD
    Barnas, J
    Araújo, MAN
    Berakdar, J
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (01): : 193 - 196
  • [36] Comparison of Current Induced Domain Wall Motion Driven by Spin Transfer Torque and by Spin Orbit Torque in Ferrimagnetic GdFeCo Wires
    Thach, Pham Van
    Sumi, Satoshi
    Tanabe, Kenji
    Awano, Hiroyuki
    MAGNETOCHEMISTRY, 2024, 10 (05)
  • [37] Domain-wall motion at an ultrahigh speed driven by spin-orbit torque in synthetic antiferromagnets
    Yu, Ziyang
    Zhang, Yue
    Zhang, Zhenhua
    Cheng, Ming
    Lu, Zhihong
    Yang, Xiaofei
    Shi, Jing
    Xiong, Rui
    NANOTECHNOLOGY, 2018, 29 (17)
  • [38] Localized states at the Rashba spin-orbit domain wall in magnetized graphene: Interplay of Rashba and magnetic domain walls
    Inglot, M.
    Barnas, J.
    Dugaev, V. K.
    Dyrdal, A.
    PHYSICAL REVIEW B, 2024, 109 (13)
  • [39] Magnetic Domain Wall Pumping by Spin Transfer Torque
    Boone, C. T.
    Krivorotov, I. N.
    PHYSICAL REVIEW LETTERS, 2010, 104 (16)
  • [40] Tradeoff between low-power operation and thermal stability in magnetic domain-wall-motion devices driven by spin Hall torque
    Kim, Kab-Jin
    Hiramatsu, Ryo
    Moriyama, Takahiro
    Tanigawa, Hironobu
    Suzuki, Tetsuhiro
    Kariyada, Eiji
    Ono, Teruo
    APPLIED PHYSICS EXPRESS, 2014, 7 (05)