Min-max model predictive control as a quadratic program

被引:17
|
作者
de la Pena, D. Munoz [1 ]
Alamo, T. [1 ]
Ramirez, D. R. [1 ]
Camacho, E. F. [1 ]
机构
[1] Univ Seville, Dept Ingn Sistemas & Automat, Seville 41092, Spain
来源
IET CONTROL THEORY AND APPLICATIONS | 2007年 / 1卷 / 01期
关键词
D O I
10.1049/iet-cta:20060016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The implementation of min-max model predictive control for constrained linear systems with bounded additive uncertainties and quadratic cost functions is dealt with. This type of controller has been shown to be a continuous piecewise affine function of the state vector by geometrical methods. However, no algorithm for computing the explicit solution has been given. Here, it is shown that the min-max optimisation problem can be expressed as a multi-parametric quadratic program, and so, the explicit form of the controller may be determined by standard multi-parametric techniques.
引用
收藏
页码:328 / 333
页数:6
相关论文
共 50 条
  • [21] Linearized min-max robust model predictive control: Application to the control of a bioprocess
    Benattia, S. E.
    Tebbani, S.
    Dumur, D.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (01) : 100 - 120
  • [22] Robust min-max model predictive control of linear systems with constraints
    Zeman, J
    Rohal'-Ilkiv, B
    2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 930 - 935
  • [23] Explicit solution of min-max model predictive control for uncertain systems
    Gao, Yu
    Sun, Li Ning
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (04): : 461 - 468
  • [24] On input-to-state stability of min-max nonlinear model predictive control
    Lazar, M.
    De la Pena, D. Munoz
    Heemels, W. P. M. H.
    Alamo, T.
    SYSTEMS & CONTROL LETTERS, 2008, 57 (01) : 39 - 48
  • [25] New methods for computing the terminal cost for min-max model predictive control
    Lazar, M.
    de la Pena, D. Munoz
    Heemels, W. P. M. H.
    Alamo, T.
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 3058 - +
  • [26] Fuzzy min-max model predictive control based on piecewise Lyapunov functions
    Zhang, Tiejun
    Feng, Gang
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 1812 - 1818
  • [27] Min-max model predictive control with robust zonotope-based observer
    Witheephanich, Kritchai
    Orihuela, Luis
    Garcia, Ramon A.
    Escano, Juan M.
    2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2016,
  • [28] Min-max model predictive control of nonlinear systems using discontinuous feedbacks
    Fontes, FACC
    Magni, L
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) : 1750 - 1755
  • [29] A robust least squares based approach to min-max model predictive control
    Jetto, L.
    Orsini, V.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (13) : 4807 - 4825
  • [30] On the piecewise linear nature of Min-Max model predictive control with bounded uncertainties
    Ramírez, DR
    Camacho, EF
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4845 - 4850