Rational Design of Plasmonic Metal Nanostructures for Solar Energy Conversion

被引:33
|
作者
Wang, Yawen [1 ]
Zhang, Junchang [2 ]
Liang, Wenkai [1 ]
Yang, He [1 ]
Guan, Tianfu [1 ]
Zhao, Bo [1 ]
Sun, Yinghui [3 ,4 ]
Chi, Lifeng [1 ]
Jiang, Lin [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat Lab FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat, Suzhou 215123, Peoples R China
[2] Changshu Inst Technol, Sch Phys & Elect Engn, Changshu 215500, Jiangsu, Peoples R China
[3] Soochow Univ, Coll Energy, Soochow Inst Energy & Mat Innovat, Suzhou 215006, Peoples R China
[4] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
来源
CCS CHEMISTRY | 2022年 / 4卷 / 04期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
structural design; metal nanostructures; multiplexed assembly; solar energy conversion; VAPOR GENERATION; VISIBLE-LIGHT; BLACK ABSORBER; NANOPARTICLES; CELLS; RESONANCE; ENHANCEMENT; ABSORPTION; NANOHYBRIDS; PERFORMANCE;
D O I
10.31635/ccschem.021.202000732
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic metal nanostructures, possessing unique surface plasmon resonance properties, show excellent capabilities for light trapping and coupling. On this basis, various plasmonic metal nanostructures offer extraordinary opportunities to promote the conversion efficiency of solar energy to electric energy, hydrogen energy or thermal energy, and so on. In this review article, we highlight a number of recent research achievements on the rational design of plasmonic metal nanostructures so as to maximize the utilization of the entire solar spectrum. Compared with single metal nanoparticles, multiplex (such as multicompositions, sizes, or shapes) nanoparticle structures emphasize advantages in broadening the absorption range and improving light-utilization efficiency. This review concludes with discussions regarding challenges in this research field and proposals of prospects for future directions.
引用
收藏
页码:1153 / 1168
页数:16
相关论文
共 50 条
  • [21] Photonic nanostructures for solar energy conversion
    Zheng, Xiuzhen
    Zhang, Liwu
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (08) : 2511 - 2532
  • [22] Colloidal nanostructures and solar energy conversion
    Klimov, Victor I.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [23] Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion
    Gupta, Mool C.
    Ungaro, Craig
    Foley, Jonathan J.
    Gray, Stephen K.
    SOLAR ENERGY, 2018, 165 : 100 - 114
  • [24] Relaxation and Excitation Rate Modifications by Metal Nanostructures for Solar Energy Conversion Applications
    Praturi, Aparna Srilakshmi
    Kim, Dai-Sik
    Singh, Bhanu Pratap
    Vasa, Parinda
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (15): : 8090 - 8097
  • [25] Carbon nanostructures for solar energy conversion schemes
    Guldi, Dirk M.
    Sgobba, Vito
    CHEMICAL COMMUNICATIONS, 2011, 47 (02) : 606 - 610
  • [26] Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions
    Cushing, Scott K.
    Bristow, Alan D.
    Wu, Nianqiang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (44) : 30013 - 30022
  • [27] Plasmonic metal-semiconductor nanostructures for solar fuel generation
    Wu, Nianqiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [28] Plasmonic Nanostructures for Photothermal Conversion
    Chen, Jinxing
    Ye, Zuyang
    Yang, Fan
    Yin, Yadong
    SMALL SCIENCE, 2021, 1 (02):
  • [29] Plasmonic Solar Cells: From Rational Design to Mechanism Overview
    Jang, Yoon Hee
    Jang, Yu Jin
    Kim, Seokhyoung
    Quan, Li Na
    Chung, Kyungwha
    Kim, Dong Ha
    CHEMICAL REVIEWS, 2016, 116 (24) : 14982 - 15034
  • [30] Hybrid nanostructures for solar-energy-conversion applications
    Shiyani, T.
    Bagchi, T.
    NANOMATERIALS AND ENERGY, 2020, 9 (01) : 39 - 46