Rational Design of Plasmonic Metal Nanostructures for Solar Energy Conversion

被引:33
|
作者
Wang, Yawen [1 ]
Zhang, Junchang [2 ]
Liang, Wenkai [1 ]
Yang, He [1 ]
Guan, Tianfu [1 ]
Zhao, Bo [1 ]
Sun, Yinghui [3 ,4 ]
Chi, Lifeng [1 ]
Jiang, Lin [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat Lab FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat, Suzhou 215123, Peoples R China
[2] Changshu Inst Technol, Sch Phys & Elect Engn, Changshu 215500, Jiangsu, Peoples R China
[3] Soochow Univ, Coll Energy, Soochow Inst Energy & Mat Innovat, Suzhou 215006, Peoples R China
[4] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
来源
CCS CHEMISTRY | 2022年 / 4卷 / 04期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
structural design; metal nanostructures; multiplexed assembly; solar energy conversion; VAPOR GENERATION; VISIBLE-LIGHT; BLACK ABSORBER; NANOPARTICLES; CELLS; RESONANCE; ENHANCEMENT; ABSORPTION; NANOHYBRIDS; PERFORMANCE;
D O I
10.31635/ccschem.021.202000732
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic metal nanostructures, possessing unique surface plasmon resonance properties, show excellent capabilities for light trapping and coupling. On this basis, various plasmonic metal nanostructures offer extraordinary opportunities to promote the conversion efficiency of solar energy to electric energy, hydrogen energy or thermal energy, and so on. In this review article, we highlight a number of recent research achievements on the rational design of plasmonic metal nanostructures so as to maximize the utilization of the entire solar spectrum. Compared with single metal nanoparticles, multiplex (such as multicompositions, sizes, or shapes) nanoparticle structures emphasize advantages in broadening the absorption range and improving light-utilization efficiency. This review concludes with discussions regarding challenges in this research field and proposals of prospects for future directions.
引用
收藏
页码:1153 / 1168
页数:16
相关论文
共 50 条
  • [1] Rational Design of Plasmonic Metal Nanostructures for Solar Energy Conversion (vol 4, pg 1153, 2022)
    Wang, Yawen
    CCS CHEMISTRY, 2022, 4 (04): : 1452 - 1452
  • [2] Conversion of solar into chemical energy on plasmonic metal nanostructures
    Linic, Suljo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [3] Plasmonic metal nanostructures for the conversion of solar into chemical energy
    Linic, Suljo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [4] Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures
    Umar Aslam
    Vishal Govind Rao
    Steven Chavez
    Suljo Linic
    Nature Catalysis, 2018, 1 : 656 - 665
  • [5] Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures
    Aslam, Umar
    Rao, Vishal Govind
    Chavez, Steven
    Linic, Suljo
    NATURE CATALYSIS, 2018, 1 (09): : 656 - 665
  • [6] Plasmonic nanostructures in solar energy conversion
    Ye, Wei
    Long, Ran
    Huang, Hao
    Xiong, Yujie
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (05) : 1008 - 1021
  • [7] Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
    Suljo Linic
    Phillip Christopher
    David B. Ingram
    Nature Materials, 2011, 10 : 911 - 921
  • [8] Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
    Linic, Suljo
    Christopher, Phillip
    Ingram, David B.
    NATURE MATERIALS, 2011, 10 (12) : 911 - 921
  • [9] Design of Novel Metal Nanostructures for Broadband Solar Energy Conversion
    Zhang, Kristine A.
    Ma, David
    Pu, Ying-Chih
    Li, Yat
    INTERNATIONAL JOURNAL OF SPECTROSCOPY, 2015,
  • [10] Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices
    Xiong, Yujie
    Long, Ran
    Liu, Dong
    Zhong, Xiaolan
    Wang, Chengming
    Li, Zhi-Yuan
    Xie, Yi
    NANOSCALE, 2012, 4 (15) : 4416 - 4420