Effect of Steel Fiber Volume Fraction and Curing Conditions on the Compressive Behavior of Alkali-Activated Slag Concrete

被引:0
|
作者
Kang, Dae Hyun [1 ]
Kim, Hye Ran [1 ]
Yun, Hyun Do [1 ]
机构
[1] Chungnam Natl Univ, Dept Architectural Engn, Taejon 305764, South Korea
来源
关键词
Alkali-Activated Slag (AAS); Steel Fiber; Compressive Strength; Curing method;
D O I
10.4028/www.scientific.net/AMM.525.491
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, an experimental investigation was carried out to examine the influence of hooked end steel fiber volume fraction and curing conditions on the compressive performance of concrete produced by using ordinary portland cement (OPC) and alkali-activated slag (AAS). Three different volume fractions of 0.5%, 1.0% and 1.5% were used in OPC and AAS concrete mixtures. Cylindrical specimens with 100 x 200mm were tested for compressive behavior of both concretes at 3, 7 and 28 days of curing age. Test results showed that curing conditions had a significant effect on compressive properties in the hardened OPC and AAS concretes. The addition of steel fibers generated a decrease in compressive strength of OPC while an increase in the compressive strength of AAS concrete was shown with adding steel fiber.
引用
收藏
页码:491 / 494
页数:4
相关论文
共 50 条
  • [31] Effect of Different Curing Regimes on the Corrosion of Alkali-Activated Slag Concrete Reinforcement Under Carbonation Environment
    Liang, Yongning
    Liu, Wudong
    Zhao, Kai
    Ji, Tao
    Cailiao Daobao/Materials Reports, 2024, 38 (11):
  • [32] Coupling effect of silica fume and steel fiber on the mechanical properties and microstructures of alkali-activated slag recycled aggregate concrete
    Li, Biao
    Qin, Zilong
    Song, Nana
    Li, Yang
    Zhang, Jin
    Wang, Songbo
    JOURNAL OF BUILDING ENGINEERING, 2025, 103
  • [33] Development of sustainable slag-based alkali-activated concrete incorporating fly ash at ambient curing conditions
    Pradhan, Shashwati Soumya
    Mishra, Umesh
    Biswal, Sushant Kumar
    Jangra, Parveen
    ENERGY ECOLOGY AND ENVIRONMENT, 2024, 9 (05) : 563 - 577
  • [34] Internal curing by superabsorbent polymers in alkali-activated slag
    Li, Zhenming
    Wyrzykowski, Mateusz
    Dong, Hua
    Granja, Jose
    Azenha, Miguel
    Lura, Pietro
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2020, 135
  • [35] Effect of Polypropylene Fiber on Properties of Alkali-Activated Slag Mortar
    Xu, Yangchen
    Chen, Haiming
    Wang, Pengju
    ADVANCES IN CIVIL ENGINEERING, 2020, 2020
  • [36] Experimental study on flexural mechanical properties of steel fiber reinforced alkali-activated slag concrete beams
    Yuan, Xiaohui
    Huo, Ruijin
    Zhang, Xin
    FRONTIERS IN PHYSICS, 2024, 12
  • [37] Resistance to Chlorides of the Alkali-Activated Slag Concrete
    Roa-Rodriguez, G.
    Aperador, W.
    Delgado, A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (01): : 282 - 291
  • [38] Alternative concrete based on alkali-activated slag
    Rodriguez, E.
    Bernal, S.
    Mejia de Gutierrez, R.
    Puertas, F.
    MATERIALES DE CONSTRUCCION, 2008, 58 (291) : 53 - 67
  • [39] Flexural behavior of alkali-activated slag-based concrete beams
    Du, Yunxing
    Wang, Jia
    Shi, Caijun
    Hwang, Hyeon-Jong
    Li, Ning
    ENGINEERING STRUCTURES, 2021, 229 (229)
  • [40] Mechanical Properties of Alkali-activated Slag Concrete
    Wan X.
    Zhang Y.
    Zhao T.
    Zhang S.
    Cheng Y.
    2018, Cailiao Daobaoshe/ Materials Review (32): : 2091 - 2095