Nonlinear Decoding of Natural Images From Large-Scale Primate Retinal Ganglion Recordings

被引:15
|
作者
Kim, Young Joon [1 ]
Brackbill, Nora [2 ]
Batty, Eleanor [1 ]
Lee, JinHyung [1 ]
Mitelut, Catalin [1 ]
Tong, William [1 ]
Chichilnisky, E. J. [2 ]
Paninski, Liam [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
VISUAL INFORMATION; BRAIN; RECONSTRUCTION; CELLS;
D O I
10.1162/neco_a_01395
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs). Our approach uses neural networks to improve on existing decoders in both accuracy and scalability. Trained and validated on real retinal spike data from more than 1000 simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of nonlinear computations for accurate decoding of the fine structures of visual stimuli. Specifically, high-pass spatial features of natural images can only be decoded using nonlinear techniques, while low-pass features can be extracted equally well by linear and nonlinear methods. Together, these results advance the state of the art in decoding natural stimuli from large populations of neurons.
引用
收藏
页码:1719 / 1750
页数:32
相关论文
共 50 条
  • [21] Adaptation in cone photoreceptors contributes to an unexpected insensitivity of primate On parasol retinal ganglion cells to spatial structure in natural images
    Yu, Zhou
    Turner, Maxwell H.
    Baudin, Jacob
    Rieke, Fred
    ELIFE, 2022, 11
  • [22] Diverse novel ganglion cell and amacrine cell types in the macaque and human retina revealed with large-scale recordings
    Chichilnisky, E. J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [23] Comparison of responses of retinal ganglion cells to natural and artificial images
    Grzywacz, N. M.
    Cao, X.
    Rapela, J.
    Merwine, D.
    PERCEPTION, 2007, 36 : 166 - 166
  • [24] RECENT RECORDINGS OF LARGE-SCALE ORGAN AND CHORAL WORKS
    MEYERHOFFMANN, HG
    MUSIK UND KIRCHE, 1991, 61 (01): : 38 - 40
  • [25] Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity
    Buxton, Rachel T.
    McKenna, Megan F.
    Clapp, Mary
    Meyer, Erik
    Stabenau, Erik
    Angeloni, Lisa M.
    Crooks, Kevin
    Wittemyer, George
    CONSERVATION BIOLOGY, 2018, 32 (05) : 1174 - 1184
  • [26] Decoding visual information from a population of retinal ganglion cells
    Warland, DK
    Reinagel, P
    Meister, M
    JOURNAL OF NEUROPHYSIOLOGY, 1997, 78 (05) : 2336 - 2350
  • [27] Analysis of large-scale nonhuman primate islet isolations
    Matsumoto, S
    Iwanaga, Y
    Okitsu, T
    Noguchi, H
    Yonekawa, Y
    Tanaka, K
    Strong, DM
    Reems, JA
    Gaur, LK
    TRANSPLANTATION PROCEEDINGS, 2005, 37 (02) : 1317 - 1321
  • [28] EFFICIENT REVIEW AND RETRIEVAL OF IMAGES FROM LARGE-SCALE PACS
    CHOU, H
    CHEN, F
    VOGEL, E
    HUANG, L
    VALENTINO, DJ
    VILLASENOR, JD
    RADIOLOGY, 1995, 197 : 258 - 258
  • [29] The Structure of Large-Scale Synchronized Firing in Primate Retina
    Shlens, Jonathon
    Field, Greg D.
    Gauthier, Jeffrey L.
    Greschner, Martin
    Sher, Alexander
    Litke, Alan M.
    Chichilnisky, E. J.
    JOURNAL OF NEUROSCIENCE, 2009, 29 (15): : 5022 - 5031
  • [30] Intensity normalisation for large-scale fMRI brain decoding
    Markides, Loizos
    Gillies, Duncan Fyfe
    2014 INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING, 2014,