Nonlinear Decoding of Natural Images From Large-Scale Primate Retinal Ganglion Recordings

被引:15
|
作者
Kim, Young Joon [1 ]
Brackbill, Nora [2 ]
Batty, Eleanor [1 ]
Lee, JinHyung [1 ]
Mitelut, Catalin [1 ]
Tong, William [1 ]
Chichilnisky, E. J. [2 ]
Paninski, Liam [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
VISUAL INFORMATION; BRAIN; RECONSTRUCTION; CELLS;
D O I
10.1162/neco_a_01395
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs). Our approach uses neural networks to improve on existing decoders in both accuracy and scalability. Trained and validated on real retinal spike data from more than 1000 simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of nonlinear computations for accurate decoding of the fine structures of visual stimuli. Specifically, high-pass spatial features of natural images can only be decoded using nonlinear techniques, while low-pass features can be extracted equally well by linear and nonlinear methods. Together, these results advance the state of the art in decoding natural stimuli from large populations of neurons.
引用
收藏
页码:1719 / 1750
页数:32
相关论文
共 50 条
  • [1] Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings
    Portelli, Geoffrey
    Barrett, John M.
    Hilgen, Gerrit
    Masquelier, Timothee
    Maccione, Alessandro
    Di Marco, Stefano
    Berdondini, Luca
    Kornprobst, Pierre
    Sernagor, Evelyne
    ENEURO, 2016, 3 (03) : 844 - 853
  • [2] Large-scale morphological survey of mouse retinal ganglion cells
    Sun, WZ
    Li, N
    He, SG
    JOURNAL OF COMPARATIVE NEUROLOGY, 2002, 451 (02) : 115 - 126
  • [3] Large-scale morophological survey of rat retinal ganglion cells
    Sun, WZ
    Li, N
    He, SG
    VISUAL NEUROSCIENCE, 2002, 19 (04) : 483 - 493
  • [4] Reconstruction of nature images from responses of primate retinal ganglion cells
    Brackbill, Nora
    Rhoades, Colleen
    Kling, Alexandra
    Shah, Nishal P.
    Sher, Alexander
    Litke, Alan M.
    Chichilnisky, E. J.
    ELIFE, 2020, 9 : 1 - 65
  • [5] Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate
    Dotson, Nicholas M.
    Goodell, Baldwin
    Salazar, Rodrigo F.
    Hoffman, Steven J.
    Gray, Charles M.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2015, 9
  • [6] Large-Scale Left and Right Eye Classification in Retinal Images
    Liu, Peng
    Gu, Zaiwang
    Liu, Fan
    Jiang, Yuming
    Jiang, Shanshan
    Mao, Haoyu
    Cheng, Jun
    Duan, Lixin
    Liu, Jiang
    COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 261 - 268
  • [7] LARGE-SCALE HANDEL + RECENT RECORDINGS
    SADIE, S
    MUSICAL TIMES, 1986, 127 (1722): : 444 - 444
  • [8] Nonlinear Spatial Integration Underlies the Diversity of Retinal Ganglion Cell Responses to Natural Images
    Karamanlis, Dimokratis
    Gollisch, Tim
    JOURNAL OF NEUROSCIENCE, 2021, 41 (15): : 3479 - 3498
  • [9] Simple model for encoding natural images by retinal ganglion cells with nonlinear spatial integration
    Liu, Jian K.
    Karamanlis, Dimokratis
    Gollisch, Tim
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (03)
  • [10] Analyzing the influence of contrast in large-scale recognition of natural images
    Sanchez, Angel
    Belen Moreno, A.
    Velez, Daniel
    Veleza, Jose F.
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2016, 23 (03) : 221 - 235