Pneumonia Detection Using an Improved Algorithm Based on Faster R-CNN

被引:15
|
作者
Yao, Shangjie [1 ]
Chen, Yaowu [2 ]
Tian, Xiang [3 ,4 ]
Jiang, Rongxin [3 ,4 ]
机构
[1] Zhejiang Univ, Inst Adv Digital Technol & Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Zhejiang Prov Key Lab Network Multimedia Technol, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Inst Adv Digital Technol & Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[4] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Detection algorithm - Feature pyramid - High-level features - Localization accuracy - Location information - Position information - Sample quality - Target information;
D O I
10.1155/2021/8854892
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pneumonia remains a threat to human health; the coronavirus disease 2019 (COVID-19) that began at the end of 2019 had a major impact on the world. It is still raging in many countries and has caused great losses to people's lives and property. In this paper, we present a method based on DeepConv-DilatedNet of identifying and localizing pneumonia in chest X-ray (CXR) images. Two-stage detector Faster R-CNN is adopted as the structure of a network. Feature Pyramid Network (FPN) is integrated into the residual neural network of a dilated bottleneck so that the deep features are expanded to preserve the deep feature and position information of the object. In the case of DeepConv-DilatedNet, the deconvolution network is used to restore high-level feature maps into its original size, and the target information is further retained. On the other hand, DeepConv-DilatedNet uses a popular fully convolution architecture with computation shared on the entire image. Then, Soft-NMS is used to screen boxes and ensure sample quality. Also, K-Means++ is used to generate anchor boxes to improve the localization accuracy. The algorithm obtained 39.23% Mean Average Precision (mAP) on the X-ray image dataset from the Radiological Society of North America (RSNA) and got 38.02% Mean Average Precision (mAP) on the ChestX-ray14 dataset, surpassing other detection algorithms. So, in this paper, an improved algorithm that can provide doctors with location information of pneumonia lesions is proposed.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] An Improved Faster R-CNN Pedestrian Detection Algorithm Based on Feature Fusion and Context Analysis
    Zhai, Sheping
    Dong, Susu
    Shang, Dingrong
    Wang, Shuhuan
    IEEE ACCESS, 2020, 8 (08): : 138117 - 138128
  • [32] Traffic Sign Detection Based on Improved Faster R-CNN Model
    Zhang Yi
    Gong Zhiyuan
    Wei Wenwen
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (18)
  • [33] Image Object Detection Method Based on Improved Faster R-CNN
    Yin, Xiuye
    Chen, Liyong
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (07)
  • [34] Martian Dust Devil Detection Based on Improved Faster R-CNN
    Guo, Zexin
    Xu, Yi
    Li, Dagang
    Wang, Yemeng
    Chow, Kim-Chiu
    Liu, Renrui
    Yang, Qiquan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 7725 - 7737
  • [35] Detection of abnormal chicken droppings based on improved Faster R-CNN
    Zhou, Min
    Zhu, Junhui
    Cui, Zhihang
    Wang, Hongying
    Sun, Xianqiu
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2023, 16 (01) : 243 - 249
  • [36] SHIP DETECTION IN SAR IMAGES BASED ON AN IMPROVED FASTER R-CNN
    Li, Jianwei
    Qu, Changwen
    Shao, Jiaqi
    PROCEEDINGS OF 2017 SAR IN BIG DATA ERA: MODELS, METHODS AND APPLICATIONS (BIGSARDATA), 2017,
  • [37] Textile Fabric Defect Detection Based on Improved Faster R-CNN
    He, Dongfang
    Wen, Jiajun
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 : 82 - 90
  • [38] Defect Detection of Pantograph Slider Based on Improved Faster R-CNN
    Jiang, Siyang
    Wei, Xiukun
    Yang, Ziming
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 5278 - 5283
  • [39] Pedestrian Detection based on Faster R-CNN
    Liu S.
    Cui X.
    Li J.
    Yang H.
    Lukač N.
    International Journal of Performability Engineering, 2019, 15 (07) : 1792 - 1801
  • [40] Improved Faster R-CNN algorithm for object parameter prediction
    Wang T.
    Cang Y.
    Bi X.
    He H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (03): : 426 - 432