Study of Lehman Creek Watershed's Hydrologic Response to Climate Change Using Downscaled CMIP5 Projections

被引:0
|
作者
Chen, Chao [1 ]
Ahmad, Sajjad [1 ]
Mejia, John [2 ]
Kalra, Ajay [3 ]
机构
[1] Univ Nevada, Dept Civil & Environm Engn, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA
[2] Desert Res Inst, Div Atmospher Sci, 2215 Raggio Pkwy, Reno, NV 89512 USA
[3] Southern Illinois Univ, Dept Civil & Environm Engn, 1230 Lincoln Dr, Carbondale, IL 62901 USA
来源
WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2016: HYDRAULICS AND WATERWAYS AND HYDRO-CLIMATE/CLIMATE CHANGE | 2016年
关键词
climate change; CMIP5; hydrologic modeling; bias-correction; CHANGE IMPACTS; STREAMFLOW; SNOWMELT; MODEL; PRECIPITATION; RESOURCES;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study focuses on the climate change impact on the hydrologic processes at watershed-scale in a snow-dominant watershed, with bias-corrected climatic data from Coupled Model Intercomparison Project phase 5 (CMIP5). Lehman Creek, a typical snow-dominant watershed, located in Great Basin Nation Park, eastern Nevada, was studied. Quantile-Quantile (Q-Q) mapping technique was applied to three climatic variables, precipitation, maximum temperature and minimum temperature, from 12 Global Climate Models (GCMs), from CMIP5 data (BCCA, RCP6.0), with reference data of historical PRISM observations for 1981-2010 as baseline period. In order to study the hydrologic impacts brought by climate change, a physical-based distributed parameter hydrologic model was developed using Precipitation-Runoff Modeling System (PRMS). The bias-corrected climatic data of 12 GCMs for baseline period (1981-2010) and projected period (2011-2099) are the forces to drive the calibrated PRMS model to simulate the hydrologic processes. Results show that compared to historical period, both positive and negative changes could occur in long-term streamflow; decreasing trends were observed in summer season (June to October) and increasing trends in spring season (January to May). The greatest streamflow increase is noticed in April (6%) and decrease in June (5%). The results of the study may help water resources management with better understanding of climate change influence on the streamflow in Lehman Creek watershed.
引用
收藏
页码:508 / 517
页数:10
相关论文
共 50 条
  • [21] Response of atmospheric energy to historical climate change in CMIP5
    Bo Han
    Shihua Lü
    Yanhong Gao
    Yinhuan Ao
    Ruiqing Li
    Journal of Meteorological Research, 2015, 29 : 93 - 105
  • [22] Response of Atmospheric Energy to Historical Climate Change in CMIP5
    Han Bo
    Lu Shihua
    Gao Yanhong
    Ao Yinhuan
    Li Ruiqing
    JOURNAL OF METEOROLOGICAL RESEARCH, 2015, 29 (01) : 93 - 105
  • [23] Evaluating Future Flood Scenarios Using CMIP5 Climate Projections
    Nyaupane, Narayan
    Thakur, Balbhadra
    Kalra, Ajay
    Ahmad, Sajjad
    WATER, 2018, 10 (12):
  • [24] Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change projections with alternative historical data sources
    Gao, Jungang
    Sheshukov, Aleksey Y.
    Yen, Haw
    Douglas-Mankin, Kyle R.
    White, Michael J.
    Arnold, Jeffrey G.
    JOURNAL OF HYDROLOGY, 2019, 568 : 551 - 561
  • [25] Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
    J.-L. Dufresne
    M.-A. Foujols
    S. Denvil
    A. Caubel
    O. Marti
    O. Aumont
    Y. Balkanski
    S. Bekki
    H. Bellenger
    R. Benshila
    S. Bony
    L. Bopp
    P. Braconnot
    P. Brockmann
    P. Cadule
    F. Cheruy
    F. Codron
    A. Cozic
    D. Cugnet
    N. de Noblet
    J.-P. Duvel
    C. Ethé
    L. Fairhead
    T. Fichefet
    S. Flavoni
    P. Friedlingstein
    J.-Y. Grandpeix
    L. Guez
    E. Guilyardi
    D. Hauglustaine
    F. Hourdin
    A. Idelkadi
    J. Ghattas
    S. Joussaume
    M. Kageyama
    G. Krinner
    S. Labetoulle
    A. Lahellec
    M.-P. Lefebvre
    F. Lefevre
    C. Levy
    Z. X. Li
    J. Lloyd
    F. Lott
    G. Madec
    M. Mancip
    M. Marchand
    S. Masson
    Y. Meurdesoif
    J. Mignot
    Climate Dynamics, 2013, 40 : 2123 - 2165
  • [26] Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
    Dufresne, J-L.
    Foujols, M-A.
    Denvil, S.
    Caubel, A.
    Marti, O.
    Aumont, O.
    Balkanski, Y.
    Bekki, S.
    Bellenger, H.
    Benshila, R.
    Bony, S.
    Bopp, L.
    Braconnot, P.
    Brockmann, P.
    Cadule, P.
    Cheruy, F.
    Codron, F.
    Cozic, A.
    Cugnet, D.
    de Noblet, N.
    Duvel, J-P.
    Ethe, C.
    Fairhead, L.
    Fichefet, T.
    Flavoni, S.
    Friedlingstein, P.
    Grandpeix, J-Y.
    Guez, L.
    Guilyardi, E.
    Hauglustaine, D.
    Hourdin, F.
    Idelkadi, A.
    Ghattas, J.
    Joussaume, S.
    Kageyama, M.
    Krinner, G.
    Labetoulle, S.
    Lahellec, A.
    Lefebvre, M-P.
    Lefevre, F.
    Levy, C.
    Li, Z. X.
    Lloyd, J.
    Lott, F.
    Madec, G.
    Mancip, M.
    Marchand, M.
    Masson, S.
    Meurdesoif, Y.
    Mignot, J.
    CLIMATE DYNAMICS, 2013, 40 (9-10) : 2123 - 2165
  • [27] Indices of climate change based on patterns from CMIP5 models, and the range of projections
    Watterson, I. G.
    CLIMATE DYNAMICS, 2019, 52 (3-4) : 2451 - 2466
  • [28] Indices of climate change based on patterns from CMIP5 models, and the range of projections
    I. G. Watterson
    Climate Dynamics, 2019, 52 : 2451 - 2466
  • [29] Investigation of climate change impacts on flow regime in the Lucas Creek catchment using multiple CMIP5 ensembles
    Akhter, Muhammad Saleem
    Shamseldin, Asaad Yahia
    Melville, Bruce William
    URBAN WATER JOURNAL, 2019, 16 (05) : 389 - 401
  • [30] Water availability in a mountainous Andean watershed under CMIP5 climate change scenarios
    Vargas, Ximena
    Gomez, Tomas
    Ahumada, Felipe
    Rubio, Eduardo
    Cartes, Mauricio
    Gibbs, Maricel
    COLD AND MOUNTAIN REGION HYDROLOGICAL SYSTEMS UNDER CLIMATE CHANGE: TOWARDS IMPROVED PROJECTIONS, 2013, 360 : 33 - 38