Experimental Study on an Innovative Shear Connector in Steel-UHPC Composite Structure

被引:3
|
作者
Liu, Yang [1 ,2 ]
Zeng, Dan [1 ]
Cao, Lei [2 ]
Lu, Naiwei [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410114, Peoples R China
[2] Hunan Univ Technol, Sch Civil Engn, Zhuzhou 412007, Peoples R China
基金
中国国家自然科学基金;
关键词
BEHAVIOR;
D O I
10.1155/2021/6643291
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In order to improve the stiffness and shear bearing capacity of steel-UHPC composite bridge, an innovative shear connector named arc-shaped reinforcement shear connector was proposed and compared with the stud and perforated bar steel plate shear connector using the static push-out test. Considering shear connector diameter, a total of ten push-out specimens for five groups were designed. The results indicated that the failure modes and failure mechanism of the arc-shaped reinforcement shear connectors were significantly different from stud shear connector and perforated bar steel plate. Obvious failure characteristics such as crack and reinforcement were not observed for the arc-shaped reinforcement specimens except for fine cracks on the top of one specimen, but these were observed for the others two types of shear connector. The relative slip value of arc-shaped reinforcement shear connector at the maximum load was the smallest and less than 1 mm in three types of shear connectors. The stiffness and shear bearing capacity of arc-shaped reinforcement were higher than those of stud and perforated bar steel plate under the same diameter. Increasing arc-shaped reinforcement diameter could improve significantly static behavior of shear connector. When the diameter of arc-shape reinforcement was increased from 8 mm to 12 mm, the ductility factor, stiffness, and shear bearing capacity of arc-shaped reinforcement shear connector were improved by 174.32%, 214.76%, and 54.2%, respectively. A calculation method of shear bearing capacity was proposed by the least square method and multiple regression analysis and agreed well with the test result.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Innovative steel-UHPC composite bridge girders for long-span bridges
    Shao, Xudong
    Deng, Lu
    Cao, Junhui
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2019, 13 (04) : 981 - 989
  • [42] Innovative steel-UHPC composite bridge girders for long-span bridges
    Xudong Shao
    Lu Deng
    Junhui Cao
    Frontiers of Structural and Civil Engineering, 2019, 13 : 981 - 989
  • [43] Flexural behavior of steel-UHPC composite slabs with perfobond rib shear connectors
    Xiao, Jing-Lin
    Zhou, Min
    Nie, Jian-Guo
    Yang, Teng-Yu
    Fan, Jian-Sheng
    ENGINEERING STRUCTURES, 2021, 245
  • [44] Experimental and numerical investigations on the flexural behavior of steel-uhpc composite slabs with perfobond rib shear connectors
    Zhou M.
    Xiao J.-L.
    Yang T.-Y.
    Nie J.-G.
    Fan J.-S.
    Gongcheng Lixue/Engineering Mechanics, 2022, 39 (07): : 19 - 29
  • [45] Flexural Performance of SSK Reinforced Steel-UHPC Composite Beams: Experimental and Numerical Study
    Zhang, Zhiwen
    Guan, Zhongwei
    Ge, Wenjie
    Liu, Yan
    Li, Shengcai
    Cao, Dafu
    JOURNAL OF BRIDGE ENGINEERING, 2024, 29 (02)
  • [46] Shear performance of high-strength friction-grip bolted shear connector in prefabricated steel-UHPC composite beams: Finite element modelling and parametric study
    Fang, Zhuangcheng
    Hu, Lingkai
    Jiang, Haibo
    Fang, Shu
    Zhao, Guifeng
    Ma, Yuhong
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [47] Shear behavior and design of headed studs embedded in steel-UHPC composite structures
    Lai, Zhichao
    Weng, Xiangyu
    Yang, Xiaoqiang
    Zhao, Haoran
    STRUCTURES, 2024, 59
  • [48] Static behavior of large stud shear connectors in steel-UHPC composite structures
    Wang, Jingquan
    Qi, Jianan
    Tong, Teng
    Xu, Qizhi
    Xiu, Hongliang
    ENGINEERING STRUCTURES, 2019, 178 : 534 - 542
  • [49] Experimental Investigation on Flexural Capacity of Steel-UHPC Continuous Composite Girder
    Wang H.-L.
    Sun T.
    Liu X.-Y.
    Tang C.
    Wang J.-J.
    Chen A.-J.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2021, 34 (08): : 218 - 233
  • [50] Research on Shear Capacity of Long Stud Connectors for Steel-UHPC Composite Beams
    Chen Z.
    Ma B.
    Gao L.
    Bridge Construction, 2023, 53 (06) : 79 - 85