Emerging Chemistry & Machine Learning

被引:5
|
作者
Jones, Christopher W.
Lawal, Wasiu
Xu, Xin
机构
来源
JACS AU | 2022年 / 2卷 / 03期
关键词
D O I
10.1021/jacsau.2c00142
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
引用
收藏
页码:541 / 542
页数:2
相关论文
共 50 条
  • [21] Emerging Machine Learning Techniques in Signal Processing
    Theodoros Evgeniou
    Aníbal R. Figueiras-Vidal
    Sergios Theodoridis
    EURASIP Journal on Advances in Signal Processing, 2008
  • [22] Emerging Machine Learning Technologies for Photonic Networks
    Shiraki, Ryuta
    2024 IEEE PHOTONICS SOCIETY SUMMER TOPICALS MEETING SERIES, SUM 2024, 2024,
  • [23] Emerging Applications of Machine Learning in Food Safety
    Deng, Xiangyu
    Cao, Shuhao
    Horn, Abigail L.
    ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 12, 2021, 2021, 12 : 513 - 538
  • [24] Are Emerging Machine Learning Models Dependable at the Nanoscales?
    Liu, Shanshan
    Wang, Ziheng
    Gao, Zhen
    Reviriego, Pedro
    Niknia, Farzad
    Tang, Xiaochen
    Zhou, Jun
    Lombardi, Fabrizio
    IEEE NANOTECHNOLOGY MAGAZINE, 2024, 18 (06) : 33 - 42
  • [25] Emerging Machine Learning Techniques in Signal Processing
    Evgeniou, Theodoros
    Figueiras-Vidal, Anibal R.
    Theodoridis, Sergios
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [26] Innovative Practices on Machine Learning for Emerging Applications
    Madkour, Kareem
    Zhang, Zhaobo
    Crouch, Alfred L.
    Levin, Peter L.
    Hunter, Eve
    Huang, Yu
    2018 IEEE 36TH VLSI TEST SYMPOSIUM (VTS 2018), 2018,
  • [27] Emerging Trends in Machine Learning for Signal Processing
    Papakostas, George A.
    Diamantaras, Konstantinos I.
    Palmieri, Francesco A. N.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [28] Emerging Trends in Machine Learning: A Polymer Perspective
    Martin, Tyler B.
    Audus, Debra J.
    ACS POLYMERS AU, 2023, 3 (03): : 239 - 258
  • [29] Roadmap on emerging hardware and technology for machine learning
    Berggren, Karl
    Xia, Qiangfei
    Likharev, Konstantin K.
    Strukov, Dmitri B.
    Jiang, Hao
    Mikolajick, Thomas
    Querlioz, Damien
    Salinga, Martin
    Erickson, John R.
    Pi, Shuang
    Xiong, Feng
    Lin, Peng
    Li, Can
    Chen, Yu
    Xiong, Shisheng
    Hoskins, Brian D.
    Daniels, Matthew W.
    Madhavan, Advait
    Liddle, James A.
    McClelland, Jabez J.
    Yang, Yuchao
    Rupp, Jennifer
    Nonnenmann, Stephen S.
    Cheng, Kwang-Ting
    Gong, Nanbo
    Lastras-Montano, Miguel Angel
    Talin, A. Alec
    Salleo, Alberto
    Shastri, Bhavin J.
    de Lima, Thomas Ferreira
    Prucnal, Paul
    Tait, Alexander N.
    Shen, Yichen
    Meng, Huaiyu
    Roques-Carmes, Charles
    Cheng, Zengguang
    Bhaskaran, Harish
    Jariwala, Deep
    Wang, Han
    Shainline, Jeffrey M.
    Segall, Kenneth
    Yang, J. Joshua
    Roy, Kaushik
    Datta, Suman
    Raychowdhury, Arijit
    NANOTECHNOLOGY, 2021, 32 (01)
  • [30] Machine Learning and Perturbation Theory Machine Learning (PTML) in Medicinal Chemistry, Biotechnology, and Nanotechnology
    Herrera-Ibata, Diana M.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2021, 21 (07) : 649 - 660