Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time

被引:0
|
作者
Diks, Krzysztof [1 ]
Stanczyk, Piotr [1 ]
机构
[1] Univ Warsaw, Inst Informat, PL-02097 Warsaw, Poland
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main result of this paper is a new perfect matching algorithm for biconnected cubic graphs. The algorithm runs in time O(n log(2) n). It is also possible, by applying randomized data structures, to get O(n log n log log(3) n) average time. Our solution improves the one given by T. Biedl et al. [3]. The algorithm of Biedl et al. runs in time O(n log(4) n). We use a similar approach. However, thanks to exploring some properties of biconnected cubic graphs we are Ale to replace complex fully-dynamic biconnectivity data structure with much simpler, dynamic graph connectivity and dynamic tree data structures. Moreover, we present a significant modification of the new algorithm which makes application of a decremental dynamic graph connectivity data structure possible, instead of one supporting the fully dynamic graph connectivity. It gives hope for further improvements.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 50 条
  • [21] RECOGNIZING BINARY HAMMING GRAPHS IN O(N(2) LOG N) TIME
    AURENHAMMER, F
    HAGAUER, J
    MATHEMATICAL SYSTEMS THEORY, 1995, 28 (05): : 387 - 395
  • [22] On graphs on n vertices having an identifying code of cardinality [log2(n+1)]
    Moncel, Julien
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (14) : 2032 - 2039
  • [23] Matching nuts and bolts in O(n log n) time
    Komlos, J
    Ma, Y
    Szemeredi, E
    PROCEEDINGS OF THE SEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1996, : 232 - 241
  • [24] Solving the Boltzmann equation in N log2 N
    Filbet, Francis
    Mouhot, Clement
    Pareschi, Lorenzo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 1029 - 1053
  • [25] Matching nuts and bolts in O(n log n) time
    Komlos, J
    Ma, Y
    Szemeredi, E
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (03) : 347 - 372
  • [26] An O(n(log n)3) algorithm for maximum matching in trapezoid graphs
    Ngoc-Khang Le
    Phan-Thuan Do
    PROCEEDINGS OF 2013 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES: RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2013, : 157 - 162
  • [27] AN O(N LOG2 N) ALGORITHM FOR MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS
    HASSIN, R
    JOHNSON, DB
    SIAM JOURNAL ON COMPUTING, 1985, 14 (03) : 612 - 624
  • [28] O(N2 log2 N) filtered backprojection reconstruction algorithm for tomography
    Basu, S
    Bresler, Y
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (10) : 1760 - 1773
  • [30] Simple O(n log2 n) Algorithms for the Planar 2-Center Problem
    Tan, Xuehou
    Jiang, Bo
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 481 - 491