Learning Regular Languages via Alternating Automata

被引:0
|
作者
Angluin, Dana [1 ]
Eisenstat, Sarah [2 ]
Fisman, Dana [3 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Univ Penn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
SETS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nearly all algorithms for learning an unknown regular language, in particular the popular L* algorithm, yield deterministic finite automata. It was recently shown that the ideas of L* can be extended to yield non-deterministic automata, and that the respective learning algorithm, NL*, outperforms L* on randomly generated regular expressions. We conjectured that this is due to the existential nature of regular expressions, and NL* might not outperform L* on languages with a universal nature. In this paper we introduce UL* - a learning algorithm for universal automata (the dual of non-deterministic automata); and AL* - a learning algorithm for alternating automata (which generalize both universal and non-deterministic automata). Our empirical results illustrate the advantages and trade-offs among L*, NL*, UL* and AL*.
引用
收藏
页码:3308 / 3314
页数:7
相关论文
共 50 条
  • [31] Compact Normal Form for Regular Languages as Xor Automata
    Vuillemin, Jean
    Gama, Nicolas
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, PROCEEDINGS, 2009, 5642 : 24 - +
  • [32] Learning approximately regular languages with reversible languages
    Kobayashi, S
    Yokomori, T
    THEORETICAL COMPUTER SCIENCE, 1997, 174 (1-2) : 251 - 257
  • [33] Beyond ω-regular languages: ωT-regular expressions and their automata and logic counterparts
    Barozzini, David
    de Frutos-Escrig, David
    Della Monica, Dario
    Montanari, Angelo
    Sala, Pietro
    THEORETICAL COMPUTER SCIENCE, 2020, 813 : 270 - 304
  • [34] Learning Commutative Regular Languages
    Gomez, Antonio Cano
    Alvarez, Gloria I.
    GRAMMATICAL INFERENCE: ALGORITHMS AND APPLICATIONS, PROCEEDINGS, 2008, 5278 : 71 - +
  • [35] Learning of Regular ω-Tree Languages
    Jayasrirani, M.
    Begam, M. H.
    Thomas, D. G.
    GRAMMATICAL INFERENCE: ALGORITHMS AND APPLICATIONS, PROCEEDINGS, 2008, 5278 : 295 - +
  • [36] Learning Regular Omega Languages
    Angluin, Dana
    Fisman, Dana
    ALGORITHMIC LEARNING THEORY (ALT 2014), 2014, 8776 : 125 - 139
  • [37] Learning regular omega languages
    Angluin, Dana
    Fisman, Dana
    THEORETICAL COMPUTER SCIENCE, 2016, 650 : 57 - 72
  • [38] Alternating automata and a temporal fixpoint calculus for visibly pushdown languages
    Bozzelli, Laura
    CONCUR 2007 - CONCURRENCY THEORY, PROCEEDINGS, 2007, 4703 : 476 - 491
  • [39] Two-way Automata and Regular Languages of Overlapping Tiles
    Dicky, Anne
    Janin, David
    FUNDAMENTA INFORMATICAE, 2015, 141 (04) : 310 - 342
  • [40] Automata Classes Accepting Languages Whose Commutative Closure is Regular
    Hoffmann, Stefan
    SOFSEM 2024: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2024, 14519 : 311 - 325