Accurate Outcome Prediction in Neuroblastoma across Independent Data Sets Using a Multigene Signature

被引:72
|
作者
De Preter, Katleen [1 ]
Vermeulen, Joelle [1 ]
Brors, Benedikt [2 ]
Delattre, Olivier [4 ]
Eggert, Angelika [5 ]
Fischer, Matthias [6 ]
Janoueix-Lerosey, Isabelle [4 ]
Lavarino, Cinzia [7 ]
Maris, John M. [8 ]
Mora, Jaume [7 ]
Nakagawara, Akira [9 ]
Oberthuer, Andre [6 ]
Ohira, Miki [9 ]
Schleiermacher, Gudrun [4 ]
Schramm, Alexander [5 ]
Schulte, Johannes H. [5 ]
Wang, Qun [8 ]
Westermann, Frank [3 ]
Speleman, Frank [1 ]
Vandesompele, Jo [1 ]
机构
[1] Univ Ghent, Ctr Med Genet, State Univ Ghent Hosp, B-9000 Ghent, Belgium
[2] German Canc Res Ctr, Dept Theoret Bioinformat, D-6900 Heidelberg, Germany
[3] German Canc Res Ctr, Dept Tumour Genet, D-6900 Heidelberg, Germany
[4] Inst Curie, Inst Natl Sante & Rech Med U830, Paris, France
[5] Univ Childrens Hosp Essen, Div Hematol & Oncol, Essen, Germany
[6] Childrens Hosp Cologne, Dept Pediat Oncol, Cologne, Germany
[7] Hosp St Joan de Deu, Dev Tumor Biol Lab, Barcelona, Spain
[8] Univ Penn, Childrens Hosp Philadelphia, Sch Med, Div Oncol, Philadelphia, PA 19104 USA
[9] Chiba Canc Ctr, Res Inst, Div Biochem, Chiba 2608717, Japan
关键词
GENE-EXPRESSION PROFILES; RISK STRATIFICATION; CANCER; CLASSIFICATION; MICROARRAYS; IDENTIFICATION; AMPLIFICATION; PROGNOSIS; DIAGNOSIS; SYSTEM;
D O I
10.1158/1078-0432.CCR-09-2607
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Reliable prognostic stratification remains a challenge for cancer patients, especially for diseases with variable clinical course such as neuroblastoma. Although numerous studies have shown that outcome might be predicted using gene expression signatures, independent cross-platform validation is often lacking. Experimental Design: Using eight independent studies comprising 933 neuroblastoma patients, a prognostic gene expression classifier was developed, trained, tested, and validated. The classifier was established based on reanalysis of four published studies with updated clinical information, reannotation of the probe sequences, common risk definition for training cases, and a single method for gene selection (prediction analysis of microarray) and classification (correlation analysis). Results: Based on 250 training samples from four published microarray data sets, a correlation signature was built using 42 robust prognostic genes. The resulting classifier was validated on 351 patients from four independent and unpublished data sets and on 129 remaining test samples from the published studies. Patients with divergent outcome in the total cohort, as well as in the different risk groups, were accurately classified (log-rank P < 0.001 for overall and progression-free survival in the four independent data sets). Moreover, the 42-gene classifier was shown to be an independent predictor for survival (odds ratio, >5). Conclusion: The strength of this 42-gene classifier is its small number of genes and its cross-platform validity in which it outperforms other published prognostic signatures. The robustness and accuracy of the classifier enables prospective assessment of neuroblastoma patient outcome. Most importantly, this gene selection procedure might be an example for development and validation of robust gene expression signatures in other cancer entities. Clin Cancer Res; 16(5); 1532-41. (C)2010 AACR.
引用
收藏
页码:1532 / 1541
页数:10
相关论文
共 50 条
  • [1] A GENE SIGNATURE PREDICTS THE CLINICAL OUTCOME IN STAGE 4 NEUROBLASTOMA ACROSS INDEPENDENT DATA SETS
    Capasso, M.
    Petrosino, G.
    Coco, S.
    Tonini, G. P.
    Oberthuer, A.
    Cimmino, F.
    Iolascon, A.
    PEDIATRIC BLOOD & CANCER, 2013, 60 : 24 - 24
  • [2] Identification of a robust gene signature that predicts breast cancer outcome in independent data sets
    James E Korkola
    Ekaterina Blaveri
    Sandy DeVries
    Dan H Moore
    E Shelley Hwang
    Yunn-Yi Chen
    Anne LH Estep
    Karen L Chew
    Ronald H Jensen
    Frederic M Waldman
    BMC Cancer, 7
  • [3] Identification of a robust gene signature that predicts breast cancer outcome in independent data sets
    Korkola, James E.
    Blaveri, Ekaterina
    DeVries, Sandy
    Moore, Dan H., II
    Hwang, Shelley
    Chen, Yunn-Yi
    Estep, Anne L. H.
    Chew, Karen L.
    Jensen, Ronald H.
    Waldman, Frederic M.
    BMC CANCER, 2007, 7
  • [4] A gene-expression signature to predict survival in breast cancer across independent data sets
    A Naderi
    A E Teschendorff
    N L Barbosa-Morais
    S E Pinder
    A R Green
    D G Powe
    J F R Robertson
    S Aparicio
    I O Ellis
    J D Brenton
    C Caldas
    Oncogene, 2007, 26 : 1507 - 1516
  • [5] A gene-expression signature to predict survival in breast cancer across independent data sets
    Naderi, A.
    Teschendorff, A. E.
    Barbosa-Morais, N. I.
    Pinder, S. E.
    Green, A. R.
    Powe, D. G.
    Robertson, J. F. R.
    Aparicio, S.
    Ellis, I. O.
    Brenton, J. D.
    Caldas, C.
    ONCOGENE, 2007, 26 (10) : 1507 - 1516
  • [6] A 3-Protein Expression Signature of Neuroblastoma for Outcome Prediction
    Xie, Yi
    Xu, Hua
    Fang, Fang
    Li, Zhiheng
    Zhou, Huiting
    Pan, Jian
    Guo, Wanliang
    Zhu, Xueming
    Wang, Jian
    Wu, Yi
    AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2018, 42 (08) : 1027 - 1035
  • [7] ACCURATE PREDICTION OF NEUROBLASTOMA OUTCOME BASED ON MIRNA EXPRESSION PROFILES
    Schulte, Johannes
    Schowe, Benjamin
    Mestdagh, Pieter
    Kaderali, Lars
    Kalaghatgi, Prabhav
    Schlierf, Stefanie
    Vermeulen, Joelle
    Brockmeyer, Bent
    Pajtler, Kristian
    Thor, Theresa
    de Preter, Katleen
    Speleman, Frank
    Marik, Katharina
    Eggert, Angelika
    Vandesompele, Jo
    Schramm, Alexander
    PEDIATRIC BLOOD & CANCER, 2010, 55 (05) : 812 - 812
  • [8] Accurate prediction of neuroblastoma outcome based on miRNA expression profiles
    Schulte, Johannes H.
    Schowe, Benjamin
    Mestdagh, Pieter
    Kaderali, Lars
    Kalaghatgi, Prabhav
    Schlierf, Stefanie
    Vermeulen, Joelle
    Brockmeyer, Bent
    Pajtler, Kristian
    Thor, Theresa
    de Preter, Katleen
    Speleman, Frank
    Morik, Katharina
    Eggert, Angelika
    Vandesompele, Jo
    Schramm, Alexander
    INTERNATIONAL JOURNAL OF CANCER, 2010, 127 (10) : 2374 - 2385
  • [9] Highly accurate prediction of food challenge outcome using routinely available clinical data
    DunnGalvin, Audrey
    Daly, Deirdre
    Cullinane, Claire
    Stenke, Emily
    Keeton, Diane
    Erlewyn-Lajeunesse, Mich
    Roberts, Graham C.
    Lucas, Jane
    Hourihane, Jonathan O'B.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2011, 127 (03) : 633 - U145
  • [10] Highly accurate prediction of food challenge outcome using routinely available clinical data
    DunnGalvin, A.
    Daly, D.
    Cullinane, C.
    Stenke, E.
    Keeton, D.
    Erlewyn-Lajeunesse, M.
    Roberts, G.
    Lucas, J.
    Hourihane, J.
    ALLERGY, 2010, 65 : 79 - 79