ASYMPTOTICS OF THE EIGENVALUES OF THE ANDERSON HAMILTONIAN WITH WHITE NOISE POTENTIAL IN TWO DIMENSIONS

被引:12
|
作者
Chouk, Khalil [1 ]
van Zuijlen, Willem [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland
[2] Weierstrass Inst Appl Anal & Stochast, Berlin, Germany
来源
ANNALS OF PROBABILITY | 2021年 / 49卷 / 04期
基金
欧洲研究理事会;
关键词
Anderson Hamiltonian; white noise; paracontrolled distributions; operators with Dirichlet boundary conditions; MODEL;
D O I
10.1214/20-AOP1497
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the Anderson Hamiltonian with white noise potential on the box [0, L](2) with Dirichlet boundary conditions. We show that all of the eigenvalues divided by logL, converge as L -> infinity, almost surely to the same deterministic constant which is given by a variational formula.
引用
收藏
页码:1917 / 1964
页数:48
相关论文
共 50 条
  • [21] Moment asymptotics for the parabolic Anderson problem with a perturbed lattice potential
    Fukushima, Ryoki
    Ueki, Naomasa
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (03) : 724 - 744
  • [22] Maxwell eigenvalues and discrete compactness in two dimensions
    Demkowicz, L
    Monk, P
    Schwab, C
    Vardapetyan, L
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (4-5) : 589 - 605
  • [23] Stabilization of Hamiltonian systems perturbed by white noise
    Dunyak, JP
    Freidlin, MI
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 2809 - 2814
  • [24] Feynman-Kac formula for parabolic Anderson model in Gaussian potential and fractional white noise
    Han, Yuecai
    Wu, Guanyu
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (02)
  • [25] Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise
    Huang, Jingyu
    Le, Khoa
    Nualart, David
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1305 - 1340
  • [26] Remnants of Anderson localization in prethermalization induced by white noise
    Lorenzo, S.
    Apollaro, T.
    Palma, G. M.
    Nandkishore, R.
    Silva, A.
    Marino, J.
    PHYSICAL REVIEW B, 2018, 98 (05)
  • [27] Asymptotics of the eigenvalues of a discrete Schrodinger operator with zero-range potential
    Lakaev, S. N.
    Holmatov, Sh. Yu.
    IZVESTIYA MATHEMATICS, 2012, 76 (05) : 946 - 966
  • [28] Dirac eigenvalues for a softcore Coulomb potential in d dimensions
    Hall, Richard L.
    Zorin, Petr
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (11)
  • [29] Inverse problems for the Pauli Hamiltonian in two dimensions
    Kang H.
    Uhlmann G.
    Journal of Fourier Analysis and Applications, 2004, 10 (2) : 201 - 215
  • [30] Inverse problems for the Pauli Hamiltonian in two dimensions
    Kang, KB
    Uhlman, G
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (02) : 201 - 215