ASYMPTOTICS OF THE EIGENVALUES OF THE ANDERSON HAMILTONIAN WITH WHITE NOISE POTENTIAL IN TWO DIMENSIONS

被引:12
|
作者
Chouk, Khalil [1 ]
van Zuijlen, Willem [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland
[2] Weierstrass Inst Appl Anal & Stochast, Berlin, Germany
来源
ANNALS OF PROBABILITY | 2021年 / 49卷 / 04期
基金
欧洲研究理事会;
关键词
Anderson Hamiltonian; white noise; paracontrolled distributions; operators with Dirichlet boundary conditions; MODEL;
D O I
10.1214/20-AOP1497
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the Anderson Hamiltonian with white noise potential on the box [0, L](2) with Dirichlet boundary conditions. We show that all of the eigenvalues divided by logL, converge as L -> infinity, almost surely to the same deterministic constant which is given by a variational formula.
引用
收藏
页码:1917 / 1964
页数:48
相关论文
共 50 条
  • [1] Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential
    Koenig, Wolfgang
    Perkowski, Nicolas
    van Zuijlen, Willem
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1351 - 1384
  • [2] Integrated density of states of the Anderson Hamiltonian with two-dimensional white noise
    Matsuda, Toyomu
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 153 : 91 - 127
  • [3] Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions
    Gubinelli, M.
    Ugurcan, B.
    Zachhuber, I.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (01): : 82 - 149
  • [4] Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions
    M. Gubinelli
    B. Ugurcan
    I. Zachhuber
    Stochastics and Partial Differential Equations: Analysis and Computations, 2020, 8 : 82 - 149
  • [5] Asymptotic of the smallest eigenvalues of the continuous Anderson Hamiltonian in d ≤ 3
    Hsu, Yueh-Sheng
    Labbe, Cyril
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2023, 11 (03): : 1089 - 1122
  • [6] Distinguishing fractional and white noise in one and two dimensions
    Hansen, A
    Schmittbuhl, J
    Batrouni, GG
    PHYSICAL REVIEW E, 2001, 63 (06): : 1 - 062102
  • [8] Anderson localization for the 1-d Schrodinger operator with white noise potential
    Dumaz, Laure
    Labbe, Cyril
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (01)
  • [9] Asymptotics of the eigenvalues of two-diagonal Jacobi matrices
    Kozhan, RV
    MATHEMATICAL NOTES, 2005, 77 (1-2) : 283 - 287
  • [10] Asymptotics of the eigenvalues of two-diagonal Jacobi matrices
    R. V. Kozhan
    Mathematical Notes, 2005, 77 : 283 - 287