Limit directions for Lorentzian Coxeter systems

被引:3
|
作者
Chen, Hao [1 ]
Labbe, Jean-Philippe [1 ]
机构
[1] Free Univ Berlin, Inst Math, Arnimallee 2, D-14195 Berlin, Germany
关键词
Coxeter groups; Lorentz space; limit set; Coxeter arrangement; infinite root systems; fractal; ROOTS;
D O I
10.4171/GGD/404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every Coxeter group admits a geometric representation as a group generated by reflections in a real vector space. In the projective representation space of a Coxeter group, limit directions arising from a point are accumulation points of the orbit of this point. In particular, limit directions arising from roots are called limit roots. Recent studies show that limit roots lie on the isotropic cone of the representation space. In this paper, we study limit directions of Coxeter groups arising from any point when the representation space is a Lorentz space. We prove that the limit roots are the only light-like limit directions, and characterize the limit roots using eigenvectors of infinite-order elements. Then we describe the structure of space-like limit directions in terms of the projective Coxeter arrangement. Some non-Lorentzian cases are also discussed.
引用
收藏
页码:469 / 498
页数:30
相关论文
共 50 条
  • [31] Lorentzian non-stationary dynamical systems
    Molaei, Mohammad Reza
    Khajoei, Najmeh
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (08) : 2127 - 2140
  • [32] Causal Fermion Systems: A Primer for Lorentzian Geometers
    Finster, Felix
    NON-REGULAR SPACETIME GEOMETRY, 2018, 968
  • [33] A case-free characterization of hyperbolic Coxeter systems
    Edgar, Tom
    JOURNAL OF GROUP THEORY, 2011, 14 (05) : 777 - 782
  • [34] A note on automorphisms of halved Cayley graphs of Coxeter systems
    Pankov, Mark
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (01) : 101 - 106
  • [35] ROOT SYSTEMS FOR ASYMMETRIC GEOMETRIC REPRESENTATIONS OF COXETER GROUPS
    Donnelly, Robert G.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (04) : 1298 - 1314
  • [36] Complex crystallographic Coxeter groups and affine root systems
    Bernstein, Joseph
    Schwarzman, Ossip
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (02) : 163 - 182
  • [37] Strong reflection rigidity of coxeter systems of dihedral groups
    Hosaka, T
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 37 - 41
  • [38] Complex crystallographic Coxeter groups and affine root systems
    Joseph Bernstein
    Ossip Schwarzman
    Journal of Nonlinear Mathematical Physics, 2006, 13 : 163 - 182
  • [39] Future Directions to Limit Surgical Site Infections
    Cuomo, Roberto
    Nisi, Giuseppe
    Brandi, Cesare
    Giardino, Francesco Ruben
    Grimaldi, Luca
    JOURNAL OF INVESTIGATIVE SURGERY, 2020, 33 (08) : 759 - 761
  • [40] On Hessian Limit Directions along Gradient Trajectories
    Grandjean, Vincent
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (04): : 808 - 822