Validating and Refining Cognitive Process Models Using Probabilistic Graphical Models

被引:0
|
作者
Hiatt, Laura M. [1 ]
Brooks, Connor [2 ]
Trafton, J. Gregory [1 ]
机构
[1] US Naval Res Lab, Navy Ctr Appl Res Artificial Intelligence, 4555 Overlook Ave SW, Washington, DC 20375 USA
[2] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
关键词
ACT-R; Cognitive models; Graphical models;
D O I
10.1111/tops.12616
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
We describe a new approach for developing and validating cognitive process models. In our methodology, graphical models (specifically, hidden Markov models) are developed both from human empirical data on a task and synthetic data traces generated by a cognitive process model of human behavior on the task. Differences between the two graphical models can then be used to drive model refinement. We show that iteratively using this methodology can unveil substantive and nuanced imperfections of cognitive process models that can then be addressed to increase their fidelity to empirical data.
引用
收藏
页码:873 / 888
页数:16
相关论文
共 50 条
  • [21] The Hugin Tool for probabilistic graphical models
    Madsen, AL
    Jensen, F
    Kjaerulff, UB
    Lang, M
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2005, 14 (03) : 507 - 543
  • [22] New trends in probabilistic graphical models
    Gámez, JA
    Salmerón, A
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2004, 12 : V - VI
  • [23] Evaluating probabilistic graphical models for forecasting
    Ibarguengoytia, Pablo H.
    Reyes, Alberto
    Garcia, Uriel A.
    Romero, Ines
    Pech, David
    2015 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP), 2015,
  • [24] Recent Advances in Probabilistic Graphical Models
    Bielza, Concha
    Moral, Serafin
    Salmeron, Antonio
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2015, 30 (03) : 207 - 208
  • [25] Value Symmetries in Probabilistic Graphical Models
    Madan, Gagan
    Anand, Ankit
    Mausam, Mausam
    Singla, Parag
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 886 - 895
  • [26] Probabilistic reasoning with graphical security models
    Kordy, Barbara
    Pouly, Marc
    Schweitzer, Patrick
    INFORMATION SCIENCES, 2016, 342 : 111 - 131
  • [27] Getting started in probabilistic graphical models
    Airoldi, Edoardo M.
    PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (12) : 2421 - 2425
  • [28] A Discrete Regularization for Probabilistic Graphical Models
    Kriukova, Galyna
    7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018), 2018, 2037
  • [29] Order Statistics for Probabilistic Graphical Models
    Smith, David
    Rouhani, Sara
    Gogate, Vibhav
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4625 - 4631
  • [30] Probabilistic graphical models in artificial intelligence
    Larranaga, P.
    Moral, S.
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 1511 - 1528