Voidage measurement of gas-liquid two-phase flow based on Capacitively Coupled Contact less Conductivity Detection

被引:10
|
作者
Ji, Haifeng [1 ]
Chang, Ya [1 ]
Huang, Zhiyao [1 ]
Wang, Baoliang [1 ]
Li, Haiqing [1 ]
机构
[1] Zhejiang Univ, Dept Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Capacitively Coupled Contactless; Conductivity Detection; Voidage measurement; Gas-liquid two-phase flow; Least squares support vector machine; SUPPORT VECTOR MACHINES; CAPILLARY-ELECTROPHORESIS; FRACTION; OPTIMIZATION; PARAMETERS; DESIGN;
D O I
10.1016/j.flowmeasinst.2014.08.013
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on Capacitively Coupled Contactless Conductivity Detection (CID) technique, a new method for the voidage measurement of conductive gas-liquid two-phase flow is proposed. 15 Conductance signals, which reflect voidage distribution of gas-liquid two-phase flow, are obtained by a six-electrode (CD)-D-4 sensor. With the conductance signals, the flow pattern of gas-liquid two-phase flow is identified by flow pattern classifiers and then the voidage measurement is implemented by a corresponding voidage measurement model (for each typical flow pattern, a corresponding voidage measurement model is developed). The conductance measurement of the six-electrode (CD)-D-4 sensor is implemented by phase sensitivity demodulation (PSD) method. The flow pattern classifiers and the voidage measurement models are developed by partial least squares (PLS) technique and least squares support vector machine (LS-SVM) technique. Static voidage measurement experiments and dynamic voidage measurement experiments show that the proposed voidage measurement method is effective, the developed six-electrode CID sensor is successful and the measurement accuracy is satisfactory. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [41] Flow structure of gas-liquid two-phase flow in an annulus
    Ozar, B.
    Jeong, J. J.
    Dixit, A.
    Julia, J. E.
    Hibiki, T.
    Ishiia, M.
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (15) : 3998 - 4011
  • [42] On intermittent flow characteristics of gas-liquid two-phase flow
    Thaker, Jignesh
    Banerjee, Jyotirmay
    NUCLEAR ENGINEERING AND DESIGN, 2016, 310 : 363 - 377
  • [43] Simulation of Gas-Liquid Two-Phase Flow Based on the Riemann Problem
    Zeidan, D.
    Touma, R.
    INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES 2012 (ICFAS2012), 2012, 1482 : 91 - 95
  • [44] Gas-Liquid Two-Phase Flow in a Pipe or Channel
    Pakhomov, Maksim A.
    Lobanov, Pavel D.
    WATER, 2021, 13 (23)
  • [45] Two-phase flow characteristics in gas-liquid microreactors
    Waelchli, Severin
    von Rohr, Philipp Rudolf
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2006, 32 (07) : 791 - 806
  • [46] Gas-liquid two-phase flow in meandering microchannels
    Fries, Donata A.
    Waelchli, Severin
    Von Rohr, Philipp Rudolf
    CHEMICAL ENGINEERING JOURNAL, 2008, 135 : S37 - S45
  • [47] Numerical Simulations for Gas-Liquid Two-Phase Flow
    Matsumoto, Junichi
    Takada, Naoki
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2010, 55 (06) : 387 - 393
  • [48] TWO-PHASE GAS-LIQUID FLOW IN PIPE LINES
    FARADY, L
    MATOLCSY, K
    UJHIDY, A
    BABOS, B
    INTERNATIONAL CHEMICAL ENGINEERING, 1965, 5 (02): : 263 - &
  • [49] Numerical simulations for gas-liquid two-phase flow
    Matsumoto, Junichi
    Takada, Naoki
    Toraibarojisuto/Journal of Japanese Society of Tribologists, 2010, 55 (06): : 387 - 393
  • [50] On gas-liquid two-phase flow regimes in microchannels
    Akbar, MK
    Plummer, DA
    Ghiaasiaan, SM
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (05) : 855 - 865