Robust Stabilization of Control Affine Systems with Homogeneous Functions

被引:1
|
作者
Zimenko, Konstantin [1 ]
Polyakov, Andrey [1 ,2 ]
Efimov, Denis [1 ,2 ]
机构
[1] ITMO Univ, Fac Control Syst & Robot, 49 Kronverkskiy Av, St Petersburg 197101, Russia
[2] Univ Lille, INRIA, CNRS, UMR 9189,CRIStAL, F-59000 Lille, France
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Nonlinear control; control affine systems; robust stabilization; homogeneous systems; FINITE-TIME; NONLINEAR-SYSTEMS; LYAPUNOV FUNCTION; STABILITY; DESIGN; APPROXIMATIONS;
D O I
10.1016/j.ifacol.2020.12.1755
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The stabilization problem of the affine control system X = f0 (x) + Sigma(m)(i=)(1) u(i)f(i) (x) with homogeneous functions f o , L is studied. This class of systems is of interest due to the robust properties of homogeneity and the fact that many affine systems can be approximated by or transformed to the class under consideration. An advantage of the introduced design method is that the tuning rules are presented in the form of linear matrix inequalities. Performance of the approach is illustrated by a numerical example. Copyright (C) 2020 The Authors.
引用
收藏
页码:6311 / 6316
页数:6
相关论文
共 50 条
  • [31] Constrained extremum seeking stabilization of systems not affine in control
    Scheinker, Alexander
    Scheinker, David
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (02) : 568 - 581
  • [32] Stabilization of affine systems
    Krishchenko, AP
    Kavinov, AV
    DIFFERENTIAL EQUATIONS, 2000, 36 (11) : 1628 - 1633
  • [33] Stabilization of affine systems
    A. P. Krishchenko
    A. V. Kavinov
    Differential Equations, 2000, 36 : 1628 - 1633
  • [34] Homogeneous Stabilization of Driftless Input-Affine Systems Using Wiener Processes
    Hoshino, Kenta
    Yamashita, Yuh
    Nishimura, Yuki
    Tsubakino, Daisuke
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3167 - 3172
  • [35] Robust stabilization of control systems using piecewise linear Lyapunov functions and evolutionary algorithm
    Tagawa, K
    Ohta, Y
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 3191 - 3194
  • [36] Robust model predictive control for piecewise affine systems
    Zou, Yuanyuan
    Li, Shaoyuan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2007, 26 (03) : 393 - 406
  • [37] Stabilization of switched affine systems via multiple shifted Lyapunov functions
    Serieye, M.
    Albea-Sanchez, C.
    Seuret, A.
    Jungers, M.
    IFAC PAPERSONLINE, 2020, 53 (02): : 6133 - 6138
  • [38] Robust control of non-linear affine systems
    Liang, YW
    Liaw, DC
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 137 (2-3) : 337 - 347
  • [39] Robust Sampled - Data Control of Switched Affine Systems
    Hetel, Laurentiu
    Fridman, Emilia
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (11) : 2922 - 2928
  • [40] Robust Model Predictive Control for Piecewise Affine Systems
    Yuanyuan Zou
    Shaoyuan Li
    Circuits, Systems & Signal Processing, 2007, 26 : 393 - 406