Controlling Selmer groups in the higher core rank case

被引:0
|
作者
Mazur, Barry [1 ]
Rubin, Karl [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
来源
基金
美国国家科学基金会;
关键词
Euler systems; Kolyvagin systems; core rank; Selmer groups; EULER SYSTEMS; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define Kolyvagin systems and Stark systems attached to p-adic representations in the case of arbitrary "core rank" (the core rank is a measure of the generic Selmer rank in a family of Selmer groups). Previous work dealt only with the case of core rank one, where the Kolyvagin and Stark systems are collections of cohomology classes. For general core rank, they are collections of elements of exterior powers of cohomology groups. We show under mild hypotheses that for general core rank these systems still control the size and structure of Selmer groups, and that the module of all Kolyvagin (or Stark) systems is free of rank one.
引用
收藏
页码:145 / 183
页数:39
相关论文
共 50 条
  • [21] NOTES ON THE FINE SELMER GROUPS
    Lim, Meng Fai
    ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (02) : 337 - 362
  • [22] Yoshida lifts and Selmer groups
    Boecherer, Siegfried
    Dummigan, Neil
    Schulze-Pillot, Rainer
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (04) : 1353 - 1405
  • [23] On the Galois Structure of Selmer Groups
    Burns, David
    Castillo, Daniel Macias
    Wuthrich, Christian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (22) : 11909 - 11933
  • [24] On the structure of signed Selmer groups
    Gautier Ponsinet
    Mathematische Zeitschrift, 2020, 294 : 1635 - 1658
  • [25] Finding large Selmer groups
    Mazur, B
    Rubin, K
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2005, 70 (01) : 1 - 22
  • [26] ON THE MODEL THEORY OF HIGHER RANK ARITHMETIC GROUPS
    Avni, Nir
    Meiri, Chen
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (13) : 2537 - 2590
  • [27] Shifted convolution sums for higher rank groups
    Jiang, Yujiao
    Lu, Guangshi
    FORUM MATHEMATICUM, 2019, 31 (02) : 361 - 383
  • [28] A DECOMPOSITION THEOREM FOR HIGHER RANK COXETER GROUPS
    Blair, Ryan
    Ottman, Ryan
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (07) : 2508 - 2518
  • [29] Separability properties of higher rank GBS groups
    de Gamiz, Jone Lopez
    Shepherd, Sam
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025,
  • [30] HIGHER RAMIFICATION GROUPS FOR RANK 1 VALUATIONS
    RIBENBOI.P
    MATHEMATISCHE ANNALEN, 1967, 173 (04) : 253 - &