A comparison of parametric and nonparametric estimators for probability precipitation in Korea

被引:0
|
作者
Cha, YI [1 ]
Moon, YI [1 ]
机构
[1] Seoul Natl Univ, Dept Civil Engn, Water Res Lab, Seoul 151, South Korea
来源
关键词
frequency analysis; nonparametric; probability precipitation;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The frequency analyses for the precipitation data in Korea were performed. We used daily maximum series, monthly maximum series, and annual series. In order to select an appropriate distribution, 17 probability density functions were considered for the parametric frequency analyses. They are Gamma II, Gamma III, GEV (Generalized Extreme Value), Gumbel (Extreme Value type I), Log-Gumbel, Log-normal II, Log-normal III, Log-Pearson type III, Weibull II,Weibull III, Exponential, Normal, Pearson type III, Generalized logistic, Generalized Pareto, Kappa and Wakeby distributions. For nonparametric frequency analyses, variable kernel and log-variable kernel estimators were used. Nonparametric methods do not require assumptions about the underlying populations from which the data are obtained. Therefore, they are better suited for multimodal distributions with the advantage of not requiring a distributional assumption. The variable kernel estimates are comparable and are in the middle of the range of the parametric estimates. The variable kernel estimates show a very small probability in extrapolation beyond the largest observed data in the sample. However, the log-variable kernel estimates remedied these defects with the log-transformed data.
引用
收藏
页码:701 / 708
页数:8
相关论文
共 50 条
  • [41] A Monte Carlo comparison of parametric and nonparametric quantile regressions
    Min, I
    Kim, I
    APPLIED ECONOMICS LETTERS, 2004, 11 (02) : 71 - 74
  • [42] Comparison of parametric and nonparametric models for traffic flow forecasting
    Smith, BL
    Williams, BM
    Oswald, RK
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2002, 10 (04) : 303 - 321
  • [43] Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
    Hamid Sahebalam
    Mohsen Gholizadeh
    Hasan Hafezian
    Ayoub Farhadi
    Journal of Genetics, 2019, 98
  • [44] A simulation comparison of parametric and nonparametric dimensionality detection procedures
    Mroch, AA
    Bolt, DM
    APPLIED MEASUREMENT IN EDUCATION, 2006, 19 (01) : 67 - 91
  • [45] Comparison of parametric and nonparametric methods to map oligogenes by linkage
    Lio, P
    Morton, NE
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) : 5344 - 5348
  • [46] Empirical Comparison of Parametric and Nonparametric Trade Gravity Models
    Gallo, Mariano
    Marzano, Vittorio
    Simonelli, Fulvio
    TRANSPORTATION RESEARCH RECORD, 2012, (2269) : 29 - 41
  • [47] A comparison of nonparametric and parametric methods to adjust for baseline measures
    Carlsson, Martin O.
    Zou, Kelly H.
    Yu, Ching-Ray
    Liu, Kezhen
    Sun, Franklin W.
    CONTEMPORARY CLINICAL TRIALS, 2014, 37 (02) : 225 - 233
  • [48] Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
    Sahebalam, Hamid
    Gholizadeh, Mohsen
    Hafezian, Hasan
    Farhadi, Ayoub
    JOURNAL OF GENETICS, 2019, 98 (04)
  • [49] Analysis of admittance data: Comparison of a parametric and a nonparametric method
    Winterhalter, J
    Ebling, DG
    Maier, D
    Honerkamp, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 153 (01) : 139 - 159
  • [50] Comparison of parametric and nonparametric methods to map oligogenes by linkage
    Lio, P.
    Morton, N. E.
    Proceedings of the National Academy of Sciences of the United States of America, 94 (10):