A comparison of parametric and nonparametric estimators for probability precipitation in Korea

被引:0
|
作者
Cha, YI [1 ]
Moon, YI [1 ]
机构
[1] Seoul Natl Univ, Dept Civil Engn, Water Res Lab, Seoul 151, South Korea
来源
关键词
frequency analysis; nonparametric; probability precipitation;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The frequency analyses for the precipitation data in Korea were performed. We used daily maximum series, monthly maximum series, and annual series. In order to select an appropriate distribution, 17 probability density functions were considered for the parametric frequency analyses. They are Gamma II, Gamma III, GEV (Generalized Extreme Value), Gumbel (Extreme Value type I), Log-Gumbel, Log-normal II, Log-normal III, Log-Pearson type III, Weibull II,Weibull III, Exponential, Normal, Pearson type III, Generalized logistic, Generalized Pareto, Kappa and Wakeby distributions. For nonparametric frequency analyses, variable kernel and log-variable kernel estimators were used. Nonparametric methods do not require assumptions about the underlying populations from which the data are obtained. Therefore, they are better suited for multimodal distributions with the advantage of not requiring a distributional assumption. The variable kernel estimates are comparable and are in the middle of the range of the parametric estimates. The variable kernel estimates show a very small probability in extrapolation beyond the largest observed data in the sample. However, the log-variable kernel estimates remedied these defects with the log-transformed data.
引用
收藏
页码:701 / 708
页数:8
相关论文
共 50 条
  • [1] NONPARAMETRIC ESTIMATORS FOR THE PROBABILITY OF RUIN
    CROUX, K
    VERAVERBEKE, N
    INSURANCE MATHEMATICS & ECONOMICS, 1990, 9 (2-3): : 127 - 130
  • [2] Comparison of precipitation extremes estimation using parametric and nonparametric methods
    Holesovsky, Jan
    Fusek, Michal
    Blachut, Vit
    Michalek, Jaroslav
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2016, 61 (13): : 2376 - 2386
  • [3] Nonparametric Regression When Estimating the Probability of Success: A Comparison of Four Extant Estimators
    Rand R. Wilcox
    Journal of Statistical Theory and Practice, 2012, 6 (3) : 443 - 451
  • [4] Nonparametric Regression When Estimating the Probability of Success: A Comparison of Four Extant Estimators
    Wilcox, Rand R.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2012, 6 (03) : 443 - 451
  • [5] Parametric and nonparametric estimators of ED100α
    Park, Dongryeon
    Park, Sangun
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (08) : 661 - 672
  • [6] Comparison of Nonparametric Frequency Estimators
    Slepicka, David
    Petri, Dario
    Agrez, Dusan
    Radil, Tomas
    Lapuh, Rado
    Schoukens, Johan
    Nunzi, Emilia
    Sedlacek, Milos
    2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [7] On comparison of nonparametric and parametric approximate confidence bounds for the probability P{X<Y}
    Lumelskii Ya.P.
    Volkovich Z.V.
    Journal of Mathematical Sciences, 2007, 146 (4) : 6016 - 6021
  • [8] Asymptotic Properties of Probability Measure Estimators in a Nonparametric Model
    Banks, H. T.
    Catenacci, Jared
    Hu, Shuhua
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 417 - 433
  • [9] Comparing Parametric, Nonparametric, and Semiparametric Estimators: The Weibull Trials
    Cole, Stephen R.
    Edwards, Jessie K.
    Breskin, Alexander
    Hudgens, Michael G.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (08) : 1643 - 1651
  • [10] Asymptotic Relative Efficiency of Parametric and Nonparametric Survival Estimators
    Nemes, Szilard
    STATS, 2023, 6 (04): : 1147 - 1159