On the decay problem for the Zakharov and Klein-Gordon-Zakharov systems in one dimension

被引:1
|
作者
Martinez, Maria E. [1 ]
机构
[1] Univ Chile, Dept Ingn Matemat DIM, FCFM, Santiago, Chile
关键词
NONLINEAR SCHRODINGER LIMIT; TRAVELING-WAVE SOLUTIONS; ORBITAL STABILITY; CAUCHY-PROBLEM; GLOBAL EXISTENCE; SOLITARY WAVES; WELL-POSEDNESS; ENERGY SPACE; EQUATIONS; SCATTERING;
D O I
10.1007/s00028-021-00701-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the long time asymptotic behaviour of solutions to the scalar Zakharov system iu(t) + Delta u = nu, n(tt) - Delta n = Delta vertical bar u vertical bar(2) and the Klein-Gordon-Zakharov system u(tt) - Delta u + u = -nu, n(tt) - Delta n = Delta vertical bar u vertical bar(2) in one dimension of space. For these two systems, we give two results proving decay of solutions for initial data in the energy space. The first result deals with decay over compact intervals assuming smallness and parity conditions (u odd). The second result proves decay in far field regions along curves for solutions whose growth can be dominated by an increasing C-1 function. No smallness condition is needed to prove this last result for the Zakharov system. We argue relying on the use of suitable virial identities appropriate for the equations and follow the technics of [22, 24] and [33].
引用
收藏
页码:3733 / 3763
页数:31
相关论文
共 50 条
  • [31] 指数函数法求解Klein-Gordon-Zakharov方程
    张鹏
    信息系统工程, 2014, (01) : 145+107 - 145
  • [32] From the Klein-Gordon-Zakharov system to a singular nonlinear Schrodinger system
    Masmoudi, Nader
    Nakanishi, Kenji
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04): : 1073 - 1096
  • [33] LOCAL STRUCTURE-PRESERVING ALGORITHMS FOR THE KLEIN-GORDON-ZAKHAROV EQUATION
    汪佳玲
    周政婷
    王雨顺
    Acta Mathematica Scientia, 2023, 43 (03) : 1211 - 1238
  • [34] Galerkin finite element methods for the generalized Klein-Gordon-Zakharov equations
    Gao, Yali
    Mei, Liquan
    Li, Rui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2466 - 2484
  • [35] Small energy scattering for the Klein-Gordon-Zakharov system with radial symmetry
    Guo, Zihua
    Nakanishi, Kenji
    Wang, Shuxia
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 733 - 755
  • [36] Two Energy Conserving Numerical Schemes for the Klein-Gordon-Zakharov Equations
    Chen, Juan
    Zhang, Luming
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [37] 耦合Klein-Gordon-Zakharov方程的新精确解
    傅海明
    戴正德
    哈尔滨商业大学学报(自然科学版), 2010, 26 (02) : 231 - 234
  • [38] Convergence of a Linearized and Conservative Difference Scheme for the Klein-Gordon-Zakharov Equation
    Wang Tingchun
    Guo Boling
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 26 (02): : 107 - 121
  • [39] Soliton solutions of the Klein-Gordon-Zakharov equations with power law nonlinearity
    Triki, Houria
    Boucerredj, Noureddine
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 341 - 346
  • [40] On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics
    Baskonus, H. M.
    Sulaiman, T. A.
    Bulut, H.
    INDIAN JOURNAL OF PHYSICS, 2019, 93 (03) : 393 - 399