Explicit Halpern-type iterative algorithm for solving equilibrium problems with applications

被引:3
|
作者
Muangchoo, Kanikar [1 ]
机构
[1] Rajamangala Univ Technol Phra Nakhon RMUTP, Fac Sci & Technol, 1381 Pracharat 1 Rd, Bangkok 10800, Thailand
来源
关键词
Equilibrium problem; Lipschitz-type continuity; strong convergence; fixed point problem; variational inequality problem; SUBGRADIENT EXTRAGRADIENT METHOD; STRONG-CONVERGENCE; FIXED-POINTS; VARIATIONAL-INEQUALITIES; MAPPINGS;
D O I
10.22436/jmcs.025.02.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A number of iterative algorithms have been established to solve equilibrium problems, and one of the most effective methods is a two-step extragradient method. The main objective of this study is to introduce a modified algorithm that is constructed around two methods; Halpern-type method and extragradient method with a new size rule to solve the equilibrium problems accompanied with pseudo-monotone and Lipschitz-type continuous bi-function in a real Hilbert space. Using certain mild conditions on the bi-function, as well as certain conditions on the iterative control parameters, proves a strong convergence theorem. The proposed algorithm uses a monotonic step size rule depending on local bi-function information. The main results are also used to solve variational inequalities and fixed-point problems. The numerical behavior of the proposed algorithm on different test problems is provided compared to other existing algorithms.
引用
收藏
页码:115 / 132
页数:18
相关论文
共 50 条
  • [21] STRONG CONVERGENCE OF HALPERN-TYPE PROJECTION SUBGRADIENT ALGORITHMS WITH LINEAR SEARCH FOR SPLIT EQUILIBRIUM PROBLEMS
    Yao, Yonghong
    Postolache, Mihai
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (02) : 363 - 373
  • [22] EXPLICIT ITERATIVE ALGORITHMS FOR SOLVING EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS
    Ansari, Qamrul Hasan
    Islam, Monirul
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (02) : 425 - 439
  • [23] Strong convergence of a Halpern-type iteration algorithm for fixed point problems in Banach spaces
    Yao, Zhangsong
    Zhu, Li-Jun
    Liou, Yeong-Cheng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 489 - 495
  • [24] Strong convergence of the Modified Halpern-type iterative algorithms in Banach spaces
    Cho, Yeol Je
    Qin, Xiaolong
    Kang, Shin Min
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 51 - 68
  • [25] A MODIFIED HALPERN-TYPE ITERATION ALGORITHM FOR QUASI-φ-ASYMPTOTICALLY NONEXPANSIVE MAPPINGS AND APPLICATIONS
    Tang, Yong Kun
    Chang, Shih-sen
    Wang, Lin
    Zhao, Y. H.
    Chan, Chi Kin
    MATHEMATICA SLOVACA, 2014, 64 (01) : 175 - 186
  • [26] A modified Halpern-type iteration algorithm for a family of hemi-relatively nonexpansive mappings and systems of equilibrium problems in Banach spaces
    Wang, Ziming
    Su, Yongfu
    Wang, Dongxing
    Dong, Yucai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2364 - 2371
  • [27] A New Halpern-Type Bregman Projection Method for Solving Variational Inequality Problems in Reflexive Banach Space
    Tang, Yan
    Zhang, Yeyu
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [28] A New Halpern-Type Bregman Projection Method for Solving Variational Inequality Problems in Reflexive Banach Space
    Yan Tang
    Yeyu Zhang
    Results in Mathematics, 2023, 78
  • [29] A Modified Halpern-Type Iterative Method of a System of Equilibrium Problems and a Fixed Point for a Totally Quasi-φ-Asymptotically Nonexpansive Mapping in a Banach Space
    Kanjanasamranwong, Preedaporn
    Kumam, Poom
    Saewan, Siwaporn
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [30] HALPERN-TYPE PROXIMAL POINT ALGORITHM IN CAT(0) SPACES
    Okeke, Chibueze Christian
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 801 - 823