On the Two-Phonon Relaxation of Excited States of Boron Acceptors in Diamond

被引:1
|
作者
Bekin, N. A. [1 ]
机构
[1] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
deep impurities; multiphonon relaxation; diamond; boron acceptors in diamond; OSCILLATORY PHOTOCONDUCTIVITY; MULTIPHONON; TRANSITIONS; ABSORPTION; DYNAMICS;
D O I
10.1134/S1063782619100051
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The relaxation of holes from excited states of boron acceptors in diamond with the emission of two optical phonons is studied theoretically. To describe the wave function of acceptor states, an electron-like Hamiltonian with an isotropic effective mass is used. The wave function of the ground state is determined by the quantum-defect method. The probability of the transition is calculated in the adiabatic approximation. It is assumed that the phonon dispersion law is isotropic and the phonon frequency is quadratically dependent on the wave-vector modulus, with the maximum and minimum frequencies omega(max) and omega(min) at the center and boundary of the Brillouin zone, respectively. A high sensitivity of the probability of the transition to the characteristic of phonon dispersion omega(max) - omega(min) is revealed, especially for the transition with the energy E-T in the range 2PLANCK CONSTANT OVER TWO PI omega(min) <= E-T < PLANCK CONSTANT OVER TWO PI omega(min) + PLANCK CONSTANT OVER TWO PI omega(max). Depending on the energy of the transition and on the phonon dispersion, the two-phonon relaxation rate at the low-temperature limit varies from extremely small values (<10(8) s(-1)) near the threshold E-T = 2PLANCK CONSTANT OVER TWO PI omega(min) to extremely large values (>10(12) s(-1)) in the "resonance" range PLANCK CONSTANT OVER TWO PI omega(min) + PLANCK CONSTANT OVER TWO PI omega(max) <= E-T <= 2PLANCK CONSTANT OVER TWO PI omega(max).
引用
收藏
页码:1340 / 1347
页数:8
相关论文
共 50 条
  • [31] Two-phonon assisted selective adsorption
    Brenig, Wilhelm
    Mosch, Christian
    PHYSICAL REVIEW B, 2010, 82 (19):
  • [32] Cooperative two-phonon phenomena in superconductivity
    Enaki, NA
    Eremeev, VV
    NEW JOURNAL OF PHYSICS, 2002, 4 : 80.1 - 80.12
  • [33] Two-phonon Raman scattering in InP
    Kernohan, ETM
    Phillips, RT
    SOLID STATE COMMUNICATIONS, 1996, 100 (04) : 245 - 249
  • [34] Two-phonon absorption operator in spectroscopy
    Toutounji, Mohamad
    CHEMICAL PHYSICS LETTERS, 2013, 555 : 92 - 95
  • [35] Two-Phonon Raman Scattering In Graphene
    Popov, Valentin N.
    10TH JUBILEE CONFERENCE OF THE BALKAN PHYSICAL UNION, 2019, 2075
  • [36] Two-phonon infrared processes in semiconductors
    Lawler, HM
    Shirley, EL
    Physics of Semiconductors, Pts A and B, 2005, 772 : 1194 - 1195
  • [37] Population and detection of two-phonon octupole vibrational states in Pb-208
    Vetter, K
    Macchiavelli, AO
    Asztalos, SJ
    Clark, RM
    Deleplanque, MA
    Diamond, RM
    Fallon, P
    Krucken, R
    Lee, IY
    MacLeod, RW
    Schmid, GJ
    Stephens, FS
    PHYSICAL REVIEW C, 1997, 56 (04): : 2316 - 2319
  • [38] Raman measurement of the effect of lattice defects on the two-phonon density of states in ZnO
    Nour-Al-Deen, Ibrahim
    El-Kurdi, Riham
    Patra, Digambara
    Kazan, Michel
    JOURNAL OF RAMAN SPECTROSCOPY, 2021, 52 (10) : 1758 - 1763
  • [39] Stabilizing entanglement of boron-vacancy defects in a hexagonal boron-nitride membrane by two-phonon driving
    Qiao, Yi-Fan
    Pan, Xue-Feng
    Yao, Xiao-Yu
    Hei, Xin-Lei
    Li, Peng-Bo
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [40] Nature of Lieb’s “Hole” Excitations and Two-Phonon States of a Bose Gas
    Maksim Tomchenko
    Journal of Low Temperature Physics, 2020, 201 : 463 - 488