The Observational Uncertainty of Coronal Hole Boundaries in Automated Detection Schemes

被引:16
|
作者
Reiss, Martin A. [1 ]
Muglach, Karin [2 ,3 ]
Mostl, Christian [1 ]
Arge, Charles N. [2 ]
Bailey, Rachel [4 ]
Delouille, Veronique [5 ]
Garton, Tadhg M. [6 ]
Hamada, Amr [7 ]
Hofmeister, Stefan [8 ,9 ]
Illarionov, Egor [10 ,11 ]
Jarolim, Robert [8 ]
Kirk, Michael S. F. [2 ,12 ]
Kosovichev, Alexander [13 ,14 ,15 ]
Krista, Larisza [16 ,17 ]
Lee, Sangwoo [18 ]
Lowder, Chris [19 ]
MacNeice, Peter J. [2 ]
Veronig, Astrid [8 ,20 ]
机构
[1] Austrian Acad Sci, Space Res Inst, Graz, Austria
[2] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Catholic Univ Amer, Washington, DC 20064 USA
[4] Zent Anstalt Meteorol & Geodynam, Conrad Observ, Vienna, Austria
[5] Royal Observ Belgium, Brussels, Belgium
[6] Univ Southampton, Southampton, Hants, England
[7] Univ Oulu, Space Phys & Astron Res Unit, Space Climate Grp, Oulu, Finland
[8] Karl Franzens Univ Graz, Inst Phys, Graz, Austria
[9] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA
[10] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[11] Moscow Ctr Fundamental & Appl Math, Moscow 119234, Russia
[12] ASTRA Llc, Louisville, CO 80027 USA
[13] New Jersey Inst Technol, Ctr Computat Heliophys, Newark, NJ 07102 USA
[14] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA
[15] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[16] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[17] NOAA, Natl Ctr Environm Informat, Boulder, CO 80305 USA
[18] Korean Space Weather Ctr, Jeju, South Korea
[19] Southwest Res Inst, Boulder, CO USA
[20] Karl Franzens Univ Graz, Kanzelhohe Observ Solar & Environm Res, Graz, Austria
来源
ASTROPHYSICAL JOURNAL | 2021年 / 913卷 / 01期
基金
奥地利科学基金会; 俄罗斯科学基金会;
关键词
SOLAR-WIND SPEED; DYNAMICS; EVOLUTION; FLUX;
D O I
10.3847/1538-4357/abf2c8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Coronal holes are the observational manifestation of the solar magnetic field open to the heliosphere and are of pivotal importance for our understanding of the origin and acceleration of the solar wind. Observations from space missions such as the Solar Dynamics Observatory now allow us to study coronal holes in unprecedented detail. Instrumental effects and other factors, however, pose a challenge to automatically detect coronal holes in solar imagery. The science community addresses these challenges with different detection schemes. Until now, little attention has been paid to assessing the disagreement between these schemes. In this COSPAR ISWAT initiative, we present a comparison of nine automated detection schemes widely applied in solar and space science. We study, specifically, a prevailing coronal hole observed by the Atmospheric Imaging Assembly instrument on 2018 May 30. Our results indicate that the choice of detection scheme has a significant effect on the location of the coronal hole boundary. Physical properties in coronal holes such as the area, mean intensity, and mean magnetic field strength vary by a factor of up to 4.5 between the maximum and minimum values. We conclude that our findings are relevant for coronal hole research from the past decade, and are therefore of interest to the solar and space research community.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Trans-Equatorial Loop System Arising from Coronal Hole Boundaries through Interactions between Active Regions and Coronal Holes
    Yokoyama, Masaki
    Masuda, Satoshi
    SOLAR PHYSICS, 2010, 263 (1-2) : 135 - 152
  • [42] Automated coronal hole segmentation from Solar EUV Images using the watershed transform
    Ciecholewski, Marcin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 33 : 203 - 218
  • [43] Automated checkerboard detection and indexing using circular boundaries
    Bok, Yunsu
    Ha, Hyowon
    Kweon, In So
    PATTERN RECOGNITION LETTERS, 2016, 71 : 66 - 72
  • [44] An Automated Method for the Detection of Topographic Patterns at Tectonic Boundaries
    Karimi, Bobak
    Karimi, Hassan A.
    NINTH INTERNATIONAL CONFERENCES ON PERVASIVE PATTERNS AND APPLICATIONS (PATTERNS 2017), 2017, : 72 - 77
  • [45] Where are the boundaries? Automated pocket detection for druggability studies
    Andrea Volkamer
    T Grombacher
    Matthias Rarey
    Journal of Cheminformatics, 2 (Suppl 1)
  • [46] Multi-channel coronal hole detection with convolutional neural networks
    Jarolim, R.
    Veronig, A. M.
    Hofmeister, S.
    Heinemann, S. G.
    Temmer, M.
    Podladchikova, T.
    Dissauer, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 652
  • [47] Observational Evidence of Interchange Reconnection between a Solar Coronal Hole and a Small Emerging Active Region
    Kong, D. F.
    Pan, G. M.
    Yan, X. L.
    Wang, J. C.
    Li, Q. L.
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 863 (02)
  • [48] Coronal hole boundaries evolution at small scales I. EIT 195 Å and TRACE 171 Å view
    Madjarska, M. S.
    Wiegelmann, T.
    ASTRONOMY & ASTROPHYSICS, 2009, 503 (03): : 991 - 997
  • [49] Solar wind rotation rate and shear at coronal hole boundaries: Possible consequences for magnetic field inversions
    Pinto, R.F.
    Poirier, N.
    Rouillard, A.P.
    Kouloumvakos, A.
    Griton, L.
    Fargette, N.
    Kieokaew, R.
    Lavraud, B.
    Brun, A.S.
    Astronomy and Astrophysics, 2021, 653
  • [50] Alfvenic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?
    Bavassano, B.
    Schwadron, N. A.
    Pietropaolo, E.
    Bruno, R.
    ANNALES GEOPHYSICAE, 2006, 24 (02) : 785 - 789