Affine-Invariant Orders on the Set of Positive-Definite Matrices

被引:1
|
作者
Mostajeran, Cyrus [1 ]
Sepulchre, Rodolphe [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
关键词
D O I
10.1007/978-3-319-68445-1_71
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a family of orders on the set S-n(+) of positive-definite matrices of dimension n derived from the homogeneous geometry of S-n(+) induced by the natural transitive action of the general linear group GL(n). The orders are induced by affine-invariant cone fields, which arise naturally from a local analysis of the orders that are compatible with the homogeneous structure of S-n(+). We then revisit the well-known Lowner-Heinz theorem and provide an extension of this classical result derived using differential positivity with respect to affine-invariant cone fields.
引用
收藏
页码:613 / 620
页数:8
相关论文
共 50 条
  • [31] OPERATOR NORMS OF WORDS FORMED FROM POSITIVE-DEFINITE MATRICES
    Drury, S. W.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 13 - 20
  • [32] POSITIVE-DEFINITE CONSTRAINED LEAST-SQUARES ESTIMATION OF MATRICES
    HU, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 229 : 167 - 174
  • [33] UPPER-BOUNDS FOR DETERMINANTS OF SYMMETRICAL POSITIVE-DEFINITE MATRICES
    KUSHCH, VL
    MATHEMATICAL NOTES, 1993, 53 (5-6) : 605 - 610
  • [34] Estimation of symmetric positive-definite matrices from imperfect measurements
    Chen, YX
    McInroy, JE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (10) : 1721 - 1725
  • [35] SOME LIMIT RELATIONS FOR MULTIDIMENSIONAL POSITIVE-DEFINITE TOEPLITZ MATRICES
    ADAMYAN, VM
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1988, 22 (01) : 44 - 45
  • [36] THE SPACE OF POSITIVE DEFINITE MATRICES AND GROMOV INVARIANT
    SAVAGE, RP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (01) : 239 - 263
  • [37] Invariant tolerance relations on positive definite matrices
    Lim, Yongdo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 619 : 1 - 11
  • [38] Affine-invariant curve matching
    Zuliani, M
    Bhagavathy, S
    Manjunath, BS
    Kenney, CS
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3041 - 3044
  • [39] Affine-Invariant Midrange Statistics
    Mostajeran, Cyrus
    Grussler, Christian
    Sepulchre, Rodolphe
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 494 - 501
  • [40] AFFINE-INVARIANT SCENE CATEGORIZATION
    Wei, Xue
    Phung, Son Lam
    Bouzerdoum, Abdesselam
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1031 - 1035