Tool Health Monitoring Using Airborne Acoustic Emission and Convolutional Neural Networks: A Deep Learning Approach

被引:5
|
作者
Arslan, Muhammad [1 ]
Kamal, Khurram [1 ]
Sheikh, Muhammad Fahad [2 ]
Khan, Mahmood Anwar [1 ]
Ratlamwala, Tahir Abdul Hussain [1 ]
Hussain, Ghulam [3 ]
Alkahtani, Mohammed [4 ,5 ]
机构
[1] Natl Univ Sci & Technol, Dept Engn Sci, Islamabad 44000, Pakistan
[2] Univ Management & Technol, Dept Mech Engn, Lahore 54770, Pakistan
[3] GIK Inst Engn Sci & Technol, Fac Mech Engn, Topi 23640, Pakistan
[4] King Saud Univ, Ind Engn Dept, Coll Engn, Riyadh 11421, Saudi Arabia
[5] King Saud Univ, Adv Mfg Inst, Raytheon Chair Syst Engn RCSE, Riyadh 11421, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 06期
关键词
spectrogram; acoustic emission; tool health monitoring; convolutional neural network;
D O I
10.3390/app11062734
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tool health monitoring (THM) is in great focus nowadays from the perspective of predictive maintenance. It prevents the increased downtime due to breakdown maintenance, resulting in reduced production cost. The paper provides a novel approach to monitoring the tool health of a computer numeric control (CNC) machine for a turning process using airborne acoustic emission (AE) and convolutional neural networks (CNN). Three different work-pieces of aluminum, mild steel, and Teflon are used in experimentation to classify the health of carbide and high-speed steel (HSS) tools into three categories of new, average (used), and worn-out tool. Acoustic signals from the machining process are used to produce time-frequency spectrograms and then fed to a tri-layered CNN architecture that has been carefully crafted for high accuracies and faster trainings. Different sizes and numbers of convolutional filters, in different combinations, are used for multiple trainings to compare the classification accuracy. A CNN architecture with four filters, each of size 5 x 5, gives best results for all cases with a classification average accuracy of 99.2%. The proposed approach provides promising results for tool health monitoring of a turning process using airborne acoustic emission.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] An Intelligent Approach for Cotton Plant Disease Detection using Convolutional Neural Networks: A Deep Learning Perspective
    Chaudhari, Prasad
    V. Patil, Ritesh
    Mahalle, Parikshit N.
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (01) : 891 - 899
  • [42] Learning ability of interpolating deep convolutional neural networks
    Zhou, Tian-Yi
    Huo, Xiaoming
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 68
  • [43] Deep Learning of Graphs with Ngram Convolutional Neural Networks
    Luo, Zhiling
    Liu, Ling
    Yin, Jianwei
    Li, Ying
    Wu, Zhaohui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (10) : 2125 - 2139
  • [44] LEARNING CONVOLUTIONAL NEURAL NETWORKS WITH DEEP PART EMBEDDINGS
    Gupta, Nitin
    Mujumdar, Shashank
    Agarwal, Prerna
    Jain, Abhinav
    Mehta, Sameep
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2037 - 2041
  • [45] Deep learning for steganalysis via convolutional neural networks
    Qian, Yinlong
    Dong, Jing
    Wang, Wei
    Tan, Tieniu
    MEDIA WATERMARKING, SECURITY, AND FORENSICS 2015, 2015, 9409
  • [46] Convolutional deep-learning artificial neural networks
    Lutsiv, V. P.
    JOURNAL OF OPTICAL TECHNOLOGY, 2015, 82 (08) : 499 - 508
  • [47] Deep Learning Convolutional Neural Networks for Radio Identification
    Riyaz, Shamnaz
    Sankhe, Kunal
    Ioannidis, Stratis
    Chowdhury, Kaushik
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (09) : 146 - 152
  • [48] A primer on deep learning and convolutional neural networks for clinicians
    Iglesias, Lara Lloret
    Bellon, Pablo Sanz
    del Barrio, Amaia Perez
    Fernandez-Miranda, Pablo Menendez
    Gonzalez, David Rodriguez
    Vega, Jose A.
    Mandly, Andres A. Gonzalez
    Blanco, Jose A. Parra
    INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [49] Deep learning electromagnetic inversion with convolutional neural networks
    Puzyrev, Vladimir
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 218 (02) : 817 - 832
  • [50] A primer on deep learning and convolutional neural networks for clinicians
    Lara Lloret Iglesias
    Pablo Sanz Bellón
    Amaia Pérez del Barrio
    Pablo Menéndez Fernández-Miranda
    David Rodríguez González
    José A. Vega
    Andrés A. González Mandly
    José A. Parra Blanco
    Insights into Imaging, 12