Detection of Phase Transition via Convolutional Neural Networks

被引:128
|
作者
Tanaka, Akinori [1 ]
Tomiya, Akio [2 ,3 ]
机构
[1] RIKEN, Interdisciplinary Math & Computat Collaborat Team, Wako, Saitama 3510198, Japan
[2] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China
[3] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China
关键词
D O I
10.7566/JPSJ.86.063001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A convolutional neural network (CNN) is designed to study correlation between the temperature and the spin configuration of the two-dimensional Ising model. Our CNN is able to find the characteristic feature of the phase transition without prior knowledge. Also a novel order parameter on the basis of the CNN is introduced to identify the location of the critical temperature; the result is found to be consistent with the exact value.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Convolutional neural networks for image spam detection
    Sharmin, Tazmina
    Di Troia, Fabio
    Potika, Katerina
    Stamp, Mark
    INFORMATION SECURITY JOURNAL, 2020, 29 (03): : 103 - 117
  • [42] Anomaly detection with convolutional Graph Neural Networks
    Oliver Atkinson
    Akanksha Bhardwaj
    Christoph Englert
    Vishal S. Ngairangbam
    Michael Spannowsky
    Journal of High Energy Physics, 2021
  • [43] Parallel Convolutional Neural Networks for Object Detection
    Olugboja, Adedeji
    Wang, Zenghui
    Sun, Yanxia
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (04) : 279 - 286
  • [44] Audio Recapture Detection With Convolutional Neural Networks
    Lin, Xiaodan
    Liu, Jingxian
    Kang, Xiangui
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1480 - 1487
  • [45] CONVOLUTIONAL NEURAL NETWORKS FOR DIABETIC RETINOPATHY DETECTION
    Patino-Perez, Darwin
    Armijos-Valarezo, Luis
    Choez-Acosta, Luis
    Burgos-Robalino, Freddy
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2025, (33):
  • [46] Vehicle Type Detection by Convolutional Neural Networks
    Molina-Cabello, Miguel A.
    Marcos Luque-Baena, Rafael
    Lopez-Rubio, Ezequiel
    Thurnhofer-Hemsi, Karl
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 268 - 278
  • [47] Anomaly detection with convolutional Graph Neural Networks
    Atkinson, Oliver
    Bhardwaj, Akanksha
    Englert, Christoph
    Ngairangbam, Vishal S.
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [48] Deep Convolutional Neural Networks for DGA Detection
    Catania, Carlos
    Garcia, Sebastian
    Torres, Pablo
    COMPUTER SCIENCE - CACIC 2018, 2019, 995 : 327 - 340
  • [49] Balanced Convolutional Neural Networks for Pneumoconiosis Detection
    Hao, Chaofan
    Jin, Nan
    Qiu, Cuijuan
    Ba, Kun
    Wang, Xiaoxi
    Zhang, Huadong
    Zhao, Qi
    Huang, Biqing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (17)
  • [50] Firearm Detection using Convolutional Neural Networks
    De Azevedo Kanehisa, Rodrigo Fumihiro
    Neto, Areolino De Almeida
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 707 - 714