On acyclic anyon models

被引:1
|
作者
Galindo, Cesar [1 ]
Rowell, Eric [2 ]
Wang, Zhenghan [3 ,4 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota, Colombia
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Calif Santa Barbara, Microsoft Res Stn Q, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Nilpotent modular category; Braiding; Anyon; Error correction;
D O I
10.1007/s11128-018-2012-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Acyclic anyon models are non-abelian anyon models for which thermal anyon errors can be corrected. In this note, we characterize acyclic anyon models and raise the question whether the restriction to acyclic anyon models is a deficiency of the current protocol or could it be intrinsically related to the computational power of non-abelian anyons. We also obtain general results on acyclic anyon models and find new acyclic anyon models such as and the representation theory of Drinfeld doubles of nilpotent finite groups.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] The wavefunction of an anyon
    Pachos, Jiannis K.
    ANNALS OF PHYSICS, 2007, 322 (06) : 1254 - 1264
  • [32] GRAVITATIONAL ANYON
    CHO, YM
    PARK, DH
    HAN, CG
    PHYSICAL REVIEW D, 1991, 43 (04): : 1421 - 1423
  • [33] Anyon trajectories and the systematics of the three-anyon spectrum
    Mashkevich, S
    Myrheim, J
    Olaussen, I
    Rietman, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (07): : 1299 - 1313
  • [34] THE ANCESTRY OF THE ANYON
    BIEDENHARN, L
    LIEB, E
    SIMON, B
    WILCZEK, F
    PHYSICS TODAY, 1990, 43 (08) : 90 - 91
  • [35] An anyon model
    S. V. Talalov
    Theoretical and Mathematical Physics, 2010, 165 : 1517 - 1526
  • [36] ANYON SUPERCONDUCTIVITY
    POOL, R
    SCIENCE, 1990, 247 (4949) : 1410 - 1410
  • [37] Monoidal functors, acyclic models and chain operads
    Santos, E. Guillen
    Navarro, V.
    Pascual, P.
    Roig, Agusti
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (02): : 348 - 378
  • [38] Fault Detection in Acyclic Petri Net Models
    Qu, Yizhi
    Li, Lingxi
    Chen, Yaobin
    Dai, Yaping
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 4059 - +
  • [39] Random graph models for directed acyclic networks
    Karrer, Brian
    Newman, M. E. J.
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [40] Directed acyclic graph representation of deformable models
    Goldenstein, S
    Vogler, C
    Metaxas, D
    IEEE WORKSHOP ON MOTION AND VIDEO COMPUTING (MOTION 2002), PROCEEDINGS, 2002, : 84 - 89