On acyclic anyon models

被引:1
|
作者
Galindo, Cesar [1 ]
Rowell, Eric [2 ]
Wang, Zhenghan [3 ,4 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota, Colombia
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Calif Santa Barbara, Microsoft Res Stn Q, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Nilpotent modular category; Braiding; Anyon; Error correction;
D O I
10.1007/s11128-018-2012-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Acyclic anyon models are non-abelian anyon models for which thermal anyon errors can be corrected. In this note, we characterize acyclic anyon models and raise the question whether the restriction to acyclic anyon models is a deficiency of the current protocol or could it be intrinsically related to the computational power of non-abelian anyons. We also obtain general results on acyclic anyon models and find new acyclic anyon models such as and the representation theory of Drinfeld doubles of nilpotent finite groups.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On acyclic anyon models
    César Galindo
    Eric Rowell
    Zhenghan Wang
    Quantum Information Processing, 2018, 17
  • [2] In and around abelian anyon models*
    Wang, Liang
    Wang, Zhenghan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [3] A Short Introduction to Fibonacci Anyon Models
    Trebst, Simon
    Troyer, Matthias
    Wang, Zhenghan
    Ludwig, Andreas W. W.
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2008, (176): : 384 - 407
  • [4] On the relation between the anyon and Calogero models
    Ouvry, S
    PHYSICS LETTERS B, 2001, 510 (1-4) : 335 - 340
  • [5] ACYCLIC MODELS
    EILENBERG, S
    MACLANE, S
    AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (02) : 189 - 199
  • [6] Acyclic models
    Barr, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (02): : 258 - 273
  • [7] Anyon condensation in string-net models
    Lin, Chien-Hung
    Burnell, Fiona J.
    PHYSICAL REVIEW B, 2024, 110 (11)
  • [8] Boson-lattice construction for anyon models
    Paredes, Belen
    PHYSICAL REVIEW B, 2019, 99 (20)
  • [9] ANYON NETWORKS FROM GEOMETRIC MODELS OF MATTER
    Atiyah, Michael
    Marcolli, Matilde
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (1-2): : 717 - 733
  • [10] Universal Quantum Computation with Abelian Anyon Models
    Wootton, James R.
    Pachos, Jiannis K.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2011, 270 (02) : 209 - 218