Composite Cathodes for Solid-State Lithium Batteries: "Catholytes" the Underrated Giants

被引:29
|
作者
Al-Salih, Hilal [1 ,2 ]
Houache, Mohamed Seif Eddine [1 ]
Baranova, Elena A. [2 ]
Abu-Lebdeh, Yaser [1 ]
机构
[1] Natl Res Council Canada, Energy Min & Environm Res Ctr, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
[2] Univ Ottawa, Ctr Catalysis Res & Innovat CCRI, Dept Chem & Biol Engn, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada
来源
关键词
catholytes; composite cathodes; composite solid electrolytes; lithium metal batteries; solid-state batteries; solid-state electrolytes; GARNET-TYPE OXIDE; ION-BATTERY; POLYMER ELECTROLYTES; HIGH-VOLTAGE; INTERFACE MODIFICATION; POSITIVE ELECTRODE; MESOSCALE ANALYSIS; ENERGY DENSITY; LI7LA3ZR2O12; CONDUCTIVITY;
D O I
10.1002/aesr.202200032
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To expedite the large-scale adoption of electric vehicles (EVs), increasing the gravimetric energy density of batteries to at least 250 Wh kg(-1) while sustaining a maximum cost of $120 kWh(-1) is of utmost importance. Solid-state lithium batteries are broadly accepted as promising candidates for application in the next generation of EVs as they promise safer and higher-energy-density batteries. Nonetheless, their development is impeded by many challenges, including the resistive electrode-electrolyte interface originating from the removal of the liquid electrolyte that normally permeates through the porous cathode and insures efficient ionic conductivity through the cell. One way to tackle this challenge is by formulating composite cathodes (CCs) that employ solid ionic conductors as "catholytes" in their structure. Herein, it is attempted to shed light on this less studied and poorly understood approach. The different classes of catholytes that have been reported in literature alongside the most common fabrication techniques used to prepare CCs are presented. Next, the interplay between the microstructure and design parameters of CCs with the electrochemical performance of solid-state batteries (SSBs) and the techniques used to measure their transport properties is well documented. Finally, general guidelines surrounding CC research are outlined.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] COMPOSITE POLYMER POSITIVE ELECTRODES IN SOLID-STATE LITHIUM SECONDARY BATTERIES.
    Novak, Petr
    Inganas, Olle
    Bjorklund, Robert
    1600, (134):
  • [42] Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries
    Guo, Junze
    Zheng, Jieping
    Zhang, Weidong
    Lu, Yingying
    ENERGY & FUELS, 2021, 35 (14) : 11118 - 11140
  • [43] Ultrathin and Robust Composite Electrolyte for Stable Solid-State Lithium Metal Batteries
    Ma, Yuetao
    Wang, Chengrui
    Yang, Ke
    Li, Boyu
    Li, Yuhang
    Guo, Shaoke
    Lv, Jianshuai
    An, Xufei
    Liu, Ming
    He, Yan-Bing
    Kang, Feiyu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (14) : 17978 - 17985
  • [44] Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries
    Liu, Shuailei
    Liu, Wenyi
    Ba, Deliang
    Zhao, Yongzhi
    Ye, Yihua
    Li, Yuanyuan
    Liu, Jinping
    ADVANCED MATERIALS, 2023, 35 (02)
  • [45] Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries
    Wang, Tengrui
    Zhang, Ruiqi
    Wu, Yongmin
    Zhu, Guannan
    Hu, Chenchen
    Wen, Jiayun
    Luo, Wei
    JOURNAL OF ENERGY CHEMISTRY, 2020, 46 : 187 - 190
  • [46] ELECTROCHEMICAL PROPERTIES AND CYCLING PERFORMANCES OF COMPOSITE ELECTRODES IN SOLID-STATE LITHIUM BATTERIES
    JULIEN, C
    SAIKH, SI
    BALKANSKI, M
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1992, 14 (01): : 121 - 126
  • [47] Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries
    Tengrui Wang
    Ruiqi Zhang
    Yongmin Wu
    Guannan Zhu
    Chenchen Hu
    Jiayun Wen
    Wei Luo
    Journal of Energy Chemistry , 2020, (07) : 187 - 190
  • [48] Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries
    Liang, Jianneng
    Luo, Jing
    Sun, Qian
    Yang, Xiaofei
    Li, Ruying
    Sun, Xueliang
    ENERGY STORAGE MATERIALS, 2019, 21 : 308 - 334
  • [49] Solid-State Electrolytes and Their Interfacial Properties: Implications for Solid-State Lithium Batteries
    Seul-Yi Lee
    Jishu Rawal
    Jieun Lee
    Jagadis Gautam
    Seok Kim
    Gui-Liang Xu
    Khalil Amine
    Soo-Jin Park
    Electrochemical Energy Reviews, 2025, 8 (1)
  • [50] Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries
    Zhang, Tengfei
    He, Wenjie
    Zhang, Wei
    Wang, Tao
    Li, Peng
    Sun, ZhengMing
    Yu, Xuebin
    CHEMICAL SCIENCE, 2020, 11 (33) : 8686 - 8707